Tutorial on elastic properties¶
Elastic and piezoelectric properties.¶
This tutorial shows how to calculate physical properties related to strain, for an insulator and a metal:
- the rigid-atom elastic tensor
- the rigid-atom piezoelectric tensor (insulators only)
- the internal strain tensor
- the atomic relaxation corrections to the elastic and piezoelectric tensor
You should complete tutorials RF1 and RF2 to introduce the density-functional perturbation theory (DFPT) features of ABINIT before starting this tutorial. You will learn to use additional DFPT features of ABINIT, and to use relevant parts of the associated codes Mrgddb and Anaddb.
Important
All the necessary input files to run the examples can be found in the ~abinit/tests/ directory where ~abinit is the absolute path of the abinit top-level directory.
To execute the tutorials, you are supposed to create a working directory (Work*
) and
copy there the input files and the files file of the lesson.
The files file ending with _x (e.g. tbase1_x.files) must be edited every time you start to use a new input file. You will discover more about the files file in section 1.1 of the help file.
To make things easier, we suggest to define some handy environment variables by executing the following lines in the terminal:
export ABI_HOME=Replace_with_the_absolute_path_to_the_abinit_top_level_dir export ABI_TESTS=$ABI_HOME/tests/ export ABI_TUTORIAL=$ABI_TESTS/tutorial/ # Files for base1-2-3-4, GW ... export ABI_TUTORESPFN=$ABI_TESTS/tutorespfn/ # Files specific to DFPT tutorials. export ABI_TUTOPARAL=$ABI_TESTS/tutoparal/ # Tutorials about parallel version export ABI_TUTOPLUGS=$ABI_TESTS/tutoplugs/ # Examples using external libraries. export ABI_PSPDIR=$ABI_TESTS/Psps_for_tests/ # Pseudos used in examples. export PATH=$ABI_HOME/src/98_main/:$PATH
The examples in this tutorial will use these shell variables so that one can easily copy and paste the code snippets into the terminal (remember to set ABI_HOME first!)
The last line adds the directory containing the executables to your PATH so that one can invoke the code by simply typing abinit in the terminal instead of providing the absolute path.
Finally, to run the examples in parallel with e.g. 2 MPI processes, use mpirun (mpiexec) and the syntax:
mpirun -n 2 abinit < files_file > log 2> err
The standard output of the application is redirected to log
while err
collects the standard error
(runtime error messages, if any, are written here).
This tutorial should take about two hours.
Visualisation tools are NOT covered in this tutorial. Powerful visualisation procedures have been developed in the Abipy context, relying on matplotlib. See the README of Abipy and the Abipy tutorials.
1 The ground-state geometry of (hypothetical) wurtzite AlAs¶
Before beginning, you might consider working in a different subdirectory as for the other tutorials. Why not create Work_elast in $ABI_TUTORESPFN/Input? You should also copy the files telast_1.files and telast_1.in from $ABI_TUTORESPFN/Input to Work_elast.
cd $ABI_TUTORESPFN/Input mkdir Work_elast cd Work_elast cp ../telast_1.files . cp ../telast_1.in .
You may wish to start the calculation (less than one minute on a standard 3GHz machine) before you read the following. You should open your input file telast_1.in with an editor and examine it as you read this discussion.
telast_1.in telast_1.out telast_1i telast_1o telast_1 ../../../Psps_for_tests/13al.pspnc ../../../Psps_for_tests/33as.pspnc
#AlAs in hypothetical wurzite (hexagonal) structure #Structural optimization run ndtset 2 # There are 2 datasets in this calculation # Set 1 : Internal coordinate optimization ionmov1 2 # Use BFGS algorithm for structural optimization ntime1 5 # Maximum number of optimization steps tolmxf1 1.0e-6 # Optimization is converged when maximum force # (Hartree/Bohr) is less than this maximum natfix1 2 # Fix the position of two symmetry-equivalent atoms # in doing the structural optimization iatfix1 1 2 # Choose atoms 1 and 2 as the fixed atoms (see discussion) # Set 2 : Lattice parameter relaxation (including re-optimization of # internal coordinates) dilatmx2 1.05 # Maximum scaling allowed for lattice parameters getxred2 -1 # Start with relaxed coordinates from dataset 1 getwfk2 -1 # Start with wave functions from dataset 1 ionmov2 2 # Use BFGS algorithm ntime2 12 # Maximum number of optimization steps optcell2 2 # Fully optimize unit cell geometry, keeping symmetry tolmxf2 1.0e-6 # Convergence limit for forces as above strfact2 100 # Test convergence of stresses (Hartree/bohr^3) by # multiplying by this factor and applying force # convergence test natfix2 2 iatfix2 1 2 #Common input data #Starting approximation for the unit cell acell 7.5 7.5 12.263388 #this is a guess, with the c/a #ratio based on ideal tetrahedral #bond angles rprim 0.866025403784439 0.5 0.0 #hexagonal primitive vectors must be -0.866025403784439 0.5 0.0 #specified with high accuracy to be 0.0 0.0 1.0 #sure that the symmetry is recognized #and preserved in the optimization #process #Definition of the atom types and atoms ntypat 2 znucl 13 33 natom 4 typat 1 1 2 2 #Starting approximation for atomic positions in REDUCED coordinates #based on ideal tetrahedral bond angles xred 1/3 2/3 0.0 2/3 1/3 0.5 1/3 2/3 0.375 2/3 1/3 0.875 #Gives the number of bands, explicitely (do not take the default) nband 8 # For an insulator (if described correctly as an # insulator by DFT), conduction bands should not # be included in response-function calculations #Definition of the plane wave basis set ecut 6.0 # Maximum kinetic energy cutoff (Hartree) ecutsm 0.5 # Smoothing energy needed for lattice paramete # optimization. This will be retained for # consistency throughout. #Definition of the k-point grid ngkpt 4 4 4 # 4x4x4 Monkhorst-Pack grid nshiftk 1 # Use one copy of grid only (default) shiftk 0.0 0.0 0.5 # This choice of origin for the k point grid # preserves the hexagonal symmetry of the grid, # which would be broken by the default choice. #Definition of the self-consistency procedure diemac 9.0 # Model dielectric preconditioner nstep 40 # Maxiumum number of SCF iterations tolvrs 1.0d-18 # Strict tolerance on (squared) residual of the # SCF potential needed for accurate forces and # stresses in the structural optimization, and # accurate wave functions in the RF calculations # enforce calculation of forces at each SCF step optforces 1 ## After modifying the following section, one might need to regenerate the pickle database with runtests.py -r #%%<BEGIN TEST_INFO> #%% [setup] #%% executable = abinit #%% [files] #%% files_to_test = #%% telast_1.out, tolnlines= 0, tolabs= 0.000e+00, tolrel= 0.000e+00 #%% psp_files = 13al.pspnc, 33as.pspnc #%% [paral_info] #%% max_nprocs = 2 #%% [extra_info] #%% authors = D. Hamann #%% keywords = #%% description = #%% AlAs in hypothetical wurzite (hexagonal) structure #%% Structural optimization run #%%<END TEST_INFO>
The hypothetical wurtzite structure for AlAs retains the tetrahedral coordination of the atoms of the actual zincblende structure of AlAs, but has a hexagonal lattice. It was chosen for this tutorial because the atomic positions are not completely determined by symmetry. Both the atomic positions and the lattice constants should be optimized before beginning DFPT calculations, especially those related to strain properties. While GS structural optimization was treated in tutorials 1-3, we are introducing a few new features here, and you should look at the following new input variables which will be discussed below:
There are two datasets specified in telast_1.in. First, let us examine the common input data. We specify a starting guess for acell, and give an accurate decimal specification for rprim. The definition of the atom types and atoms follows tutorial DFPT1. The reduced atomic positions xred are a starting approximation, and will be replaced by our converged results in the remaining input files, as will acell.
We will work with a fixed plane wave cutoff ecut (=6 Ha), but introduce ecutsm (0.5 Ha) as in tutorial 3 to smear the cutoff, which produces smoothly varying stresses as the lattice parameters are optimized. We will keep the same value of ecutsm for the DFPT calculations as well, since changing it from the optimization run value could reintroduce non-zero forces and stresses. For the k-point grid, we must explicitly specify shiftk since the default value results in a grid shifted so as to break hexagonal symmetry. The RF strain calculations check this, and will exit with an error message if the grid does not have the proper symmetry. The self-consistency procedures follow tutorial RF1.
Dataset 1 optimizes the atomic positions keeping the lattice parameters fixed, setting ionmov=2 as in tutorial 1. The optimization steps proceed until the maximum force component on any atom is less than tolmxf. It is always advised to relax the forces before beginning the lattice parameter optimization. Dataset 2 optimizes the lattice parameters with optcell=2 as in tutorial 3. However, treated 3 treated cubic Si, and the atom positions in reduced coordinates remained fixed. In the present, more general case, the reduced atomic coordinates must be reoptimized as the lattice parameters are optimized. Note that it is necessary to include getxred = -1 so that the second dataset is initialized with the relaxed coordinates. Coordinate and lattice parameter optimizations actually take place simultaneously, with the computed stresses at each step acting as forces on the lattice parameters. We have introduced strfact which scales the stresses so that they may be compared with the same tolmxf convergence test that is applied to the forces. The default value of 100 is probably a good choice for many systems, but you should be aware of what is happening.
From the hexagonal symmetry, we know that the positions of the atoms in the a-b basal plane are fixed. However, a uniform translation along the c axis of all the atoms leaves the structure invariant. Only the relative displacement of the Al and As planes along the c axis is physically relevant. We will fix the Al positions to be at reduced c-axis coordinates 0 and ½ (these are related by symmetry) by introducing natfix and iatfix to constrain the structural optimization. This is really just for cosmetic purposes, since letting them all slide an arbitrary amount (as they otherwise would) won’t change any results. However, you probably wouldn’t want to publish the results that way, so we may as well develop good habits.
Now we shall examine the results of the structural optimization run. As always, we should first examine the log file to make sure the run has terminated cleanly. There are a number of warnings, but none of them are apparently serious. Next, let us edit the output file, telast_1.out.
.Version 8.1.5 of ABINIT .(MPI version, prepared for a x86_64_linux_gnu5.3 computer) .Copyright (C) 1998-2018 ABINIT group . ABINIT comes with ABSOLUTELY NO WARRANTY. It is free software, and you are welcome to redistribute it under certain conditions (GNU General Public License, see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt). ABINIT is a project of the Universite Catholique de Louvain, Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt . Please read https://docs.abinit.org/theory/acknowledgments for suggested acknowledgments of the ABINIT effort. For more information, see https://www.abinit.org . .Starting date : Wed 7 Dec 2016. - ( at 20h11 ) - input file -> telast_1.in - output file -> telast_1.out - root for input files -> telast_1i - root for output files -> telast_1o DATASET 1 : space group P6_3 m c (#186); Bravais hP (primitive hexag.) ================================================================================ Values of the parameters that define the memory need for DATASET 1. intxc = 0 ionmov = 2 iscf = 7 lmnmax = 2 lnmax = 2 mgfft = 30 mpssoang = 3 mqgrid = 3001 natom = 4 nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1 nsym = 12 n1xccc = 2501 ntypat = 2 occopt = 1 xclevel = 1 - mband = 8 mffmem = 1 mkmem = 8 mpw = 428 nfft = 9720 nkpt = 8 ================================================================================ P This job should need less than 4.133 Mbytes of memory. Rough estimation (10% accuracy) of disk space for files : _ WF disk file : 0.420 Mbytes ; DEN or POT disk file : 0.076 Mbytes. ================================================================================ DATASET 2 : space group P6_3 m c (#186); Bravais hP (primitive hexag.) ================================================================================ Values of the parameters that define the memory need for DATASET 2. intxc = 0 ionmov = 2 iscf = 7 lmnmax = 2 lnmax = 2 mgfft = 30 mpssoang = 3 mqgrid = 3001 natom = 4 nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1 nsym = 12 n1xccc = 2501 ntypat = 2 occopt = 1 xclevel = 1 - mband = 8 mffmem = 1 mkmem = 8 mpw = 494 nfft = 9720 nkpt = 8 ================================================================================ P This job should need less than 4.226 Mbytes of memory. Rough estimation (10% accuracy) of disk space for files : _ WF disk file : 0.484 Mbytes ; DEN or POT disk file : 0.076 Mbytes. ================================================================================ -------------------------------------------------------------------------------- ------------- Echo of variables that govern the present computation ------------ -------------------------------------------------------------------------------- - - outvars: echo of selected default values - iomode0 = 0 , fftalg0 =312 , wfoptalg0 = 0 - - outvars: echo of global parameters not present in the input file - max_nthreads = 0 - -outvars: echo values of preprocessed input variables -------- acell 7.5000000000E+00 7.5000000000E+00 1.2263388000E+01 Bohr amu 2.69815390E+01 7.49215900E+01 diemac 9.00000000E+00 dilatmx1 1.00000000E+00 dilatmx2 1.05000000E+00 ecut 6.00000000E+00 Hartree ecutsm 5.00000000E-01 Hartree - fftalg 312 getwfk1 0 getwfk2 -1 getxred1 0 getxred2 -1 iatfix 1 2 ionmov 2 jdtset 1 2 kpt 0.00000000E+00 0.00000000E+00 1.25000000E-01 2.50000000E-01 0.00000000E+00 1.25000000E-01 5.00000000E-01 0.00000000E+00 1.25000000E-01 2.50000000E-01 2.50000000E-01 1.25000000E-01 0.00000000E+00 0.00000000E+00 3.75000000E-01 2.50000000E-01 0.00000000E+00 3.75000000E-01 5.00000000E-01 0.00000000E+00 3.75000000E-01 2.50000000E-01 2.50000000E-01 3.75000000E-01 kptrlatt 4 0 0 0 4 0 0 0 4 P mkmem 8 natfix 2 natom 4 nband 8 ndtset 2 ngfft 18 18 30 nkpt 8 nstep 40 nsym 12 ntime1 5 ntime2 12 ntypat 2 occ 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 optcell1 0 optcell2 2 optforces 1 rprim 8.6602540378E-01 5.0000000000E-01 0.0000000000E+00 -8.6602540378E-01 5.0000000000E-01 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 1.0000000000E+00 shiftk 0.00000000E+00 0.00000000E+00 5.00000000E-01 spgroup 186 symrel 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 1 1 0 -1 0 0 0 0 1 -1 0 0 1 1 0 0 0 1 0 1 0 -1 -1 0 0 0 1 -1 -1 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 1 0 -1 0 -1 0 0 0 0 1 -1 -1 0 1 0 0 0 0 1 1 0 0 -1 -1 0 0 0 1 0 -1 0 1 1 0 0 0 1 1 1 0 0 -1 0 0 0 1 tnons 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.5000000 -0.0000000 0.0000000 0.5000000 0.0000000 0.0000000 0.0000000 0.0000000 -0.0000000 0.0000000 0.0000000 0.0000000 0.5000000 0.0000000 0.0000000 0.5000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 -0.0000000 0.0000000 0.5000000 0.0000000 0.0000000 0.5000000 0.0000000 -0.0000000 0.0000000 tolmxf 1.00000000E-06 tolvrs 1.00000000E-18 typat 1 1 2 2 wtk 0.03125 0.18750 0.09375 0.18750 0.03125 0.18750 0.09375 0.18750 xangst -1.1457022644E+00 1.9844145322E+00 0.0000000000E+00 1.1457022644E+00 1.9844145322E+00 3.2447527148E+00 -1.1457022644E+00 1.9844145322E+00 2.4335645361E+00 1.1457022644E+00 1.9844145322E+00 5.6783172510E+00 xcart -2.1650635095E+00 3.7500000000E+00 0.0000000000E+00 2.1650635095E+00 3.7500000000E+00 6.1316940000E+00 -2.1650635095E+00 3.7500000000E+00 4.5987705000E+00 2.1650635095E+00 3.7500000000E+00 1.0730464500E+01 xred 3.3333333333E-01 6.6666666667E-01 0.0000000000E+00 6.6666666667E-01 3.3333333333E-01 5.0000000000E-01 3.3333333333E-01 6.6666666667E-01 3.7500000000E-01 6.6666666667E-01 3.3333333333E-01 8.7500000000E-01 znucl 13.00000 33.00000 ================================================================================ chkinp: Checking input parameters for consistency, jdtset= 1. chkinp: Checking input parameters for consistency, jdtset= 2. ================================================================================ == DATASET 1 ================================================================== - nproc = 1 Exchange-correlation functional for the present dataset will be: LDA: new Teter (4/93) with spin-polarized option - ixc=1 Citation for XC functional: S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996) Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1): R(1)= 6.4951905 3.7500000 0.0000000 G(1)= 0.0769800 0.1333333 0.0000000 R(2)= -6.4951905 3.7500000 0.0000000 G(2)= -0.0769800 0.1333333 0.0000000 R(3)= 0.0000000 0.0000000 12.2633880 G(3)= 0.0000000 0.0000000 0.0815435 Unit cell volume ucvol= 5.9739781E+02 bohr^3 Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 1.20000000E+02 degrees getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 18 18 30 ecut(hartree)= 6.000 => boxcut(ratio)= 2.18103 --- Pseudopotential description ------------------------------------------------ - pspini: atom type 1 psp file is /home/buildbot/bb/ABINIT_GIT/abiref_gnu_5.3_openmpi/torrent_pimd/tests/Psps_for_tests/13al.pspnc - pspatm: opening atomic psp file /home/buildbot/bb/ABINIT_GIT/abiref_gnu_5.3_openmpi/torrent_pimd/tests/Psps_for_tests/13al.pspnc - Troullier-Martins psp for element Al Thu Oct 27 17:31:05 EDT 1994 - 13.00000 3.00000 940714 znucl, zion, pspdat 1 1 2 2 2001 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well 0 4.657 11.889 1 2.2761078 l,e99.0,e99.9,nproj,rcpsp 0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm 1 1.829 2.761 1 2.2761078 l,e99.0,e99.9,nproj,rcpsp 0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm 2 0.000 0.000 0 2.2761078 l,e99.0,e99.9,nproj,rcpsp 0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm 2.09673076353074 0.12648111154518 1.01742091001718 rchrg,fchrg,qchrg pspatm : epsatm= 0.22155260 --- l ekb(1:nproj) --> 0 2.540658 1 1.353815 pspatm: atomic psp has been read and splines computed - pspini: atom type 2 psp file is /home/buildbot/bb/ABINIT_GIT/abiref_gnu_5.3_openmpi/torrent_pimd/tests/Psps_for_tests/33as.pspnc - pspatm: opening atomic psp file /home/buildbot/bb/ABINIT_GIT/abiref_gnu_5.3_openmpi/torrent_pimd/tests/Psps_for_tests/33as.pspnc - Troullier-Martins psp for element As Thu Oct 27 17:37:14 EDT 1994 - 33.00000 5.00000 940714 znucl, zion, pspdat 1 1 1 1 2001 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well 0 4.772 10.829 1 2.5306160 l,e99.0,e99.9,nproj,rcpsp 0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm 1 2.745 5.580 0 2.5306160 l,e99.0,e99.9,nproj,rcpsp 0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm 2.05731715564010 0.36322996461007 2.76014815959125 rchrg,fchrg,qchrg pspatm : epsatm= 27.20579911 --- l ekb(1:nproj) --> 0 0.838751 pspatm: atomic psp has been read and splines computed 8.77675255E+02 ecore*ucvol(ha*bohr**3) -------------------------------------------------------------------------------- _setup2: Arith. and geom. avg. npw (full set) are 419.906 419.872 ================================================================================ === [ionmov= 2] Broyden-Fletcher-Goldfard-Shanno method (forces) ================================================================================ --- Iteration: (1/5) Internal Cycle: (1/1) -------------------------------------------------------------------------------- ---SELF-CONSISTENT-FIELD CONVERGENCE-------------------------------------------- iter Etot(hartree) deltaE(h) residm vres2 diffor maxfor ETOT 1 -20.254324165591 -2.025E+01 4.450E-03 8.334E+00 1.787E-04 1.787E-04 ETOT 2 -20.270075644819 -1.575E-02 1.005E-07 4.210E-01 5.371E-04 7.157E-04 ETOT 3 -20.270785645399 -7.100E-04 4.785E-06 3.263E-02 2.090E-04 5.068E-04 ETOT 4 -20.270824761134 -3.912E-05 1.664E-07 8.458E-04 3.056E-05 5.373E-04 ETOT 5 -20.270825185103 -4.240E-07 1.638E-09 6.028E-06 1.048E-05 5.478E-04 ETOT 6 -20.270825188714 -3.611E-09 1.650E-11 1.112E-07 2.953E-06 5.448E-04 ETOT 7 -20.270825188809 -9.495E-11 1.341E-12 3.967E-09 1.396E-06 5.462E-04 ETOT 8 -20.270825188814 -4.825E-12 9.712E-14 5.430E-11 3.021E-07 5.459E-04 ETOT 9 -20.270825188814 7.105E-15 2.969E-16 7.388E-13 2.542E-09 5.459E-04 ETOT 10 -20.270825188814 4.619E-14 4.751E-18 1.060E-14 6.243E-10 5.459E-04 ETOT 11 -20.270825188814 -4.263E-14 5.081E-20 1.295E-16 5.546E-11 5.459E-04 ETOT 12 -20.270825188814 -4.619E-14 4.891E-22 6.983E-19 5.673E-12 5.459E-04 At SCF step 12 vres2 = 6.98E-19 < tolvrs= 1.00E-18 =>converged. Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= -3.32496227E-05 sigma(3 2)= 0.00000000E+00 sigma(2 2)= -3.32496227E-05 sigma(3 1)= 0.00000000E+00 sigma(3 3)= -2.34717014E-05 sigma(2 1)= 0.00000000E+00 Integrated electronic density in atomic spheres: ------------------------------------------------ Atom Sphere_radius Integrated_density 1 2.00000 0.96552513 2 2.00000 0.96552513 3 2.00000 2.52108818 4 2.00000 2.52108818 ---OUTPUT----------------------------------------------------------------------- Cartesian coordinates (xcart) [bohr] -2.16506350946110E+00 3.75000000000000E+00 0.00000000000000E+00 2.16506350946110E+00 3.75000000000000E+00 6.13169400000000E+00 -2.16506350946110E+00 3.75000000000000E+00 4.59877050000000E+00 2.16506350946110E+00 3.75000000000000E+00 1.07304645000000E+01 Reduced coordinates (xred) 3.33333333333333E-01 6.66666666666667E-01 0.00000000000000E+00 6.66666666666667E-01 3.33333333333333E-01 5.00000000000000E-01 3.33333333333333E-01 6.66666666666667E-01 3.75000000000000E-01 6.66666666666667E-01 3.33333333333333E-01 8.75000000000000E-01 Cartesian forces (fcart) [Ha/bohr]; max,rms= 5.45946E-04 3.15202E-04 (free atoms) -0.00000000000000E+00 -0.00000000000000E+00 -5.45946165183416E-04 -0.00000000000000E+00 -0.00000000000000E+00 -5.45946165183416E-04 -0.00000000000000E+00 -0.00000000000000E+00 5.45946165183416E-04 -0.00000000000000E+00 -0.00000000000000E+00 5.45946165183416E-04 Reduced forces (fred) 0.00000000000000E+00 -0.00000000000000E+00 6.69514965075633E-03 0.00000000000000E+00 -0.00000000000000E+00 6.69514965075633E-03 -0.00000000000000E+00 -0.00000000000000E+00 -6.69514965075633E-03 -0.00000000000000E+00 -0.00000000000000E+00 -6.69514965075633E-03 Total energy (etotal) [Ha]= -2.02708251888140E+01 --- Iteration: (2/5) Internal Cycle: (1/1) -------------------------------------------------------------------------------- ---SELF-CONSISTENT-FIELD CONVERGENCE-------------------------------------------- iter Etot(hartree) deltaE(h) residm vres2 diffor maxfor ETOT 1 -20.270825740734 -2.027E+01 2.209E-13 9.542E-06 2.546E-05 5.205E-04 ETOT 2 -20.270825755087 -1.435E-08 2.445E-14 2.407E-07 3.041E-05 4.901E-04 ETOT 3 -20.270825755543 -4.559E-10 8.136E-12 1.062E-08 2.370E-06 4.924E-04 ETOT 4 -20.270825755556 -1.315E-11 1.088E-13 4.889E-10 2.371E-07 4.922E-04 ETOT 5 -20.270825755556 -3.588E-13 6.559E-15 1.608E-11 5.830E-08 4.921E-04 ETOT 6 -20.270825755556 -1.172E-13 8.326E-17 2.500E-13 1.243E-08 4.922E-04 ETOT 7 -20.270825755556 1.421E-14 3.785E-19 4.107E-15 3.072E-10 4.922E-04 ETOT 8 -20.270825755557 -1.457E-13 8.042E-21 7.829E-17 4.416E-11 4.922E-04 ETOT 9 -20.270825755556 1.634E-13 1.696E-22 2.297E-19 9.446E-12 4.922E-04 At SCF step 9 vres2 = 2.30E-19 < tolvrs= 1.00E-18 =>converged. Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= -3.34247432E-05 sigma(3 2)= 0.00000000E+00 sigma(2 2)= -3.34247432E-05 sigma(3 1)= 0.00000000E+00 sigma(3 3)= -2.31230508E-05 sigma(2 1)= 0.00000000E+00 Integrated electronic density in atomic spheres: ------------------------------------------------ Atom Sphere_radius Integrated_density 1 2.00000 0.96553112 2 2.00000 0.96553112 3 2.00000 2.52109719 4 2.00000 2.52109719 ---OUTPUT----------------------------------------------------------------------- Cartesian coordinates (xcart) [bohr] -2.16506350946110E+00 3.75000000000000E+00 0.00000000000000E+00 2.16506350946110E+00 3.75000000000000E+00 6.13169400000000E+00 -2.16506350946110E+00 3.75000000000000E+00 4.59931644616518E+00 2.16506350946110E+00 3.75000000000000E+00 1.07310104461652E+01 Reduced coordinates (xred) 3.33333333333333E-01 6.66666666666667E-01 0.00000000000000E+00 6.66666666666667E-01 3.33333333333333E-01 5.00000000000000E-01 3.33333333333333E-01 6.66666666666667E-01 3.75044518379846E-01 6.66666666666667E-01 3.33333333333333E-01 8.75044518379846E-01 Cartesian forces (fcart) [Ha/bohr]; max,rms= 4.92159E-04 2.84148E-04 (free atoms) 5.06054506647247E-33 7.01209693529788E-32 -4.92159356881141E-04 5.06054506647247E-33 7.01209693529788E-32 -4.92159356881140E-04 -7.59081759970871E-32 2.10362908058936E-31 4.92159356881140E-04 6.57870858641422E-32 -3.50604846764894E-31 4.92159356881141E-04 Reduced forces (fred) -2.95822839457879E-31 -2.30084430689462E-31 6.03554115126390E-03 -2.95822839457879E-31 -2.30084430689462E-31 6.03554115126389E-03 -2.95822839457879E-31 -1.28189897098414E-30 -6.03554115126389E-03 8.87468518373638E-31 1.74206783236307E-30 -6.03554115126390E-03 Total energy (etotal) [Ha]= -2.02708257555565E+01 Difference of energy with previous step (new-old): Absolute (Ha)=-5.66742E-07 Relative =-2.79585E-08 --- Iteration: (3/5) Internal Cycle: (1/1) -------------------------------------------------------------------------------- ---SELF-CONSISTENT-FIELD CONVERGENCE-------------------------------------------- iter Etot(hartree) deltaE(h) residm vres2 diffor maxfor ETOT 1 -20.270826991073 -2.027E+01 1.873E-11 7.930E-04 2.319E-04 2.603E-04 ETOT 2 -20.270828183508 -1.192E-06 2.072E-12 2.000E-05 2.769E-04 1.659E-05 ETOT 3 -20.270828221391 -3.788E-08 6.753E-10 8.849E-07 2.158E-05 4.988E-06 ETOT 4 -20.270828222475 -1.084E-09 9.087E-12 4.071E-08 2.171E-06 2.817E-06 ETOT 5 -20.270828222513 -3.875E-11 5.450E-13 1.343E-09 5.303E-07 2.287E-06 ETOT 6 -20.270828222515 -1.158E-12 6.946E-15 2.086E-11 1.137E-07 2.400E-06 ETOT 7 -20.270828222515 -1.776E-14 3.161E-17 3.419E-13 2.713E-09 2.403E-06 ETOT 8 -20.270828222515 -7.816E-14 6.688E-19 6.515E-15 4.173E-10 2.403E-06 ETOT 9 -20.270828222515 -6.750E-14 1.425E-20 1.881E-17 8.983E-11 2.403E-06 ETOT 10 -20.270828222515 1.066E-13 5.687E-23 1.499E-19 1.588E-12 2.403E-06 At SCF step 10 vres2 = 1.50E-19 < tolvrs= 1.00E-18 =>converged. Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= -3.50285300E-05 sigma(3 2)= 0.00000000E+00 sigma(2 2)= -3.50285300E-05 sigma(3 1)= 0.00000000E+00 sigma(3 3)= -1.99514057E-05 sigma(2 1)= 0.00000000E+00 Integrated electronic density in atomic spheres: ------------------------------------------------ Atom Sphere_radius Integrated_density 1 2.00000 0.96558748 2 2.00000 0.96558748 3 2.00000 2.52116623 4 2.00000 2.52116623 ---OUTPUT----------------------------------------------------------------------- Cartesian coordinates (xcart) [bohr] -2.16506350946110E+00 3.75000000000000E+00 0.00000000000000E+00 2.16506350946110E+00 3.75000000000000E+00 6.13169400000000E+00 -2.16506350946110E+00 3.75000000000000E+00 4.60431195569678E+00 2.16506350946110E+00 3.75000000000000E+00 1.07360059556968E+01 Reduced coordinates (xred) 3.33333333333333E-01 6.66666666666667E-01 0.00000000000000E+00 6.66666666666667E-01 3.33333333333333E-01 5.00000000000000E-01 3.33333333333333E-01 6.66666666666667E-01 3.75451869882677E-01 6.66666666666667E-01 3.33333333333333E-01 8.75451869882678E-01 Cartesian forces (fcart) [Ha/bohr]; max,rms= 2.40330E-06 1.38755E-06 (free atoms) -0.00000000000000E+00 -0.00000000000000E+00 -2.40330381809290E-06 -0.00000000000000E+00 -0.00000000000000E+00 -2.40330381809290E-06 -0.00000000000000E+00 -0.00000000000000E+00 2.40330381809290E-06 -0.00000000000000E+00 -0.00000000000000E+00 2.40330381809290E-06 Reduced forces (fred) 0.00000000000000E+00 -0.00000000000000E+00 2.94726472031547E-05 0.00000000000000E+00 -0.00000000000000E+00 2.94726472031547E-05 -0.00000000000000E+00 -0.00000000000000E+00 -2.94726472031547E-05 -0.00000000000000E+00 -0.00000000000000E+00 -2.94726472031547E-05 Total energy (etotal) [Ha]= -2.02708282225147E+01 Difference of energy with previous step (new-old): Absolute (Ha)=-2.46696E-06 Relative =-1.21700E-07 --- Iteration: (4/5) Internal Cycle: (1/1) -------------------------------------------------------------------------------- ---SELF-CONSISTENT-FIELD CONVERGENCE-------------------------------------------- iter Etot(hartree) deltaE(h) residm vres2 diffor maxfor ETOT 1 -20.270828222544 -2.027E+01 4.501E-16 1.919E-08 1.125E-06 1.279E-06 ETOT 2 -20.270828222573 -2.894E-11 5.006E-17 4.853E-10 1.361E-06 8.272E-08 ETOT 3 -20.270828222574 -8.669E-13 1.635E-14 2.142E-11 1.061E-07 2.339E-08 ETOT 4 -20.270828222574 8.527E-14 2.195E-16 9.813E-13 1.069E-08 1.270E-08 ETOT 5 -20.270828222574 -1.634E-13 1.314E-17 3.222E-14 2.602E-09 1.010E-08 ETOT 6 -20.270828222574 8.171E-14 1.662E-19 5.021E-16 5.567E-10 1.066E-08 ETOT 7 -20.270828222574 -2.842E-14 7.612E-22 8.262E-18 1.283E-11 1.067E-08 ETOT 8 -20.270828222574 1.066E-13 1.614E-23 1.568E-19 2.138E-12 1.067E-08 At SCF step 8 vres2 = 1.57E-19 < tolvrs= 1.00E-18 =>converged. Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= -3.50364062E-05 sigma(3 2)= 0.00000000E+00 sigma(2 2)= -3.50364062E-05 sigma(3 1)= 0.00000000E+00 sigma(3 3)= -1.99359243E-05 sigma(2 1)= 0.00000000E+00 Integrated electronic density in atomic spheres: ------------------------------------------------ Atom Sphere_radius Integrated_density 1 2.00000 0.96558776 2 2.00000 0.96558776 3 2.00000 2.52116651 4 2.00000 2.52116651 ---OUTPUT----------------------------------------------------------------------- Cartesian coordinates (xcart) [bohr] -2.16506350946110E+00 3.75000000000000E+00 0.00000000000000E+00 2.16506350946110E+00 3.75000000000000E+00 6.13169400000000E+00 -2.16506350946110E+00 3.75000000000000E+00 4.60433646938489E+00 2.16506350946110E+00 3.75000000000000E+00 1.07360304693849E+01 Reduced coordinates (xred) 3.33333333333333E-01 6.66666666666667E-01 0.00000000000000E+00 6.66666666666667E-01 3.33333333333333E-01 5.00000000000000E-01 3.33333333333333E-01 6.66666666666667E-01 3.75453868815444E-01 6.66666666666667E-01 3.33333333333333E-01 8.75453868815444E-01 Cartesian forces (fcart) [Ha/bohr]; max,rms= 1.06704E-08 6.16058E-09 (free atoms) -0.00000000000000E+00 -0.00000000000000E+00 -1.06704405580042E-08 -0.00000000000000E+00 -0.00000000000000E+00 -1.06704405580042E-08 -0.00000000000000E+00 -0.00000000000000E+00 1.06704405580042E-08 -0.00000000000000E+00 -0.00000000000000E+00 1.06704405580042E-08 Reduced forces (fred) 0.00000000000000E+00 -0.00000000000000E+00 1.30855752693742E-07 0.00000000000000E+00 -0.00000000000000E+00 1.30855752693742E-07 -0.00000000000000E+00 -0.00000000000000E+00 -1.30855752693742E-07 -0.00000000000000E+00 -0.00000000000000E+00 -1.30855752693742E-07 Total energy (etotal) [Ha]= -2.02708282225735E+01 Difference of energy with previous step (new-old): Absolute (Ha)=-5.88471E-11 Relative =-2.90305E-12 At Broyd/MD step 4, gradients are converged : max grad (force/stress) = 1.0670E-08 < tolmxf= 1.0000E-06 ha/bohr (free atoms) ================================================================================ ----iterations are completed or convergence reached---- Mean square residual over all n,k,spin= 7.1212E-24; max= 1.6135E-23 reduced coordinates (array xred) for 4 atoms 0.333333333333 0.666666666667 0.000000000000 0.666666666667 0.333333333333 0.500000000000 0.333333333333 0.666666666667 0.375453868815 0.666666666667 0.333333333333 0.875453868815 rms dE/dt= 7.7905E-08; max dE/dt= 1.6379E-07; dE/dt below (all hartree) 1 0.000000000000 0.000000000000 0.000000163785 2 0.000000000000 0.000000000000 0.000000163785 3 0.000000000000 0.000000000000 -0.000000097926 4 0.000000000000 0.000000000000 -0.000000097926 cartesian coordinates (angstrom) at end: 1 -1.14570226435669 1.98441453221250 0.00000000000000 2 1.14570226435669 1.98441453221250 3.24475271484805 3 -1.14570226435669 1.98441453221250 2.43650992027823 4 1.14570226435669 1.98441453221250 5.68126263512628 cartesian forces (hartree/bohr) at end: 1 -0.00000000000000 -0.00000000000000 -0.00000001067044 2 -0.00000000000000 -0.00000000000000 -0.00000001067044 3 -0.00000000000000 -0.00000000000000 0.00000001067044 4 -0.00000000000000 -0.00000000000000 0.00000001067044 frms,max,avg= 6.1605817E-09 1.0670441E-08 0.000E+00 0.000E+00 -2.685E-09 h/b cartesian forces (eV/Angstrom) at end: 1 -0.00000000000000 -0.00000000000000 -0.00000054869607 2 -0.00000000000000 -0.00000000000000 -0.00000054869607 3 -0.00000000000000 -0.00000000000000 0.00000054869607 4 -0.00000000000000 -0.00000000000000 0.00000054869607 frms,max,avg= 3.1678982E-07 5.4869607E-07 0.000E+00 0.000E+00 -1.381E-07 e/A length scales= 7.500000000000 7.500000000000 12.263388000000 bohr = 3.968829064425 3.968829064425 6.489505429696 angstroms prteigrs : about to open file telast_1o_DS1_EIG Fermi (or HOMO) energy (hartree) = 0.08960 Average Vxc (hartree)= -0.34430 Eigenvalues (hartree) for nkpt= 8 k points: kpt# 1, nband= 8, wtk= 0.03125, kpt= 0.0000 0.0000 0.1250 (reduced coord) -0.35441 -0.30451 -0.11638 0.05456 0.05456 0.06898 0.08960 0.08960 prteigrs : prtvol=0 or 1, do not print more k-points. -------------------------------------------------------------------------------- Components of total free energy (in Hartree) : Kinetic energy = 5.94395511294076E+00 Hartree energy = 1.63720578347758E+00 XC energy = -8.69825289410813E+00 Ewald energy = -1.69355044248117E+01 PspCore energy = 1.46916382550259E+00 Loc. psp. energy= -4.87435631465794E+00 NL psp energy= 1.18696068908329E+00 >>>>>>>>> Etotal= -2.02708282225735E+01 Other information on the energy : Total energy(eV)= -5.51597287924569E+02 ; Band energy (Ha)= -1.3962204583E+00 -------------------------------------------------------------------------------- rms coord change= 1.8529E-04 atom, delta coord (reduced): 1 0.000000000000 0.000000000000 0.000000000000 2 0.000000000000 0.000000000000 0.000000000000 3 0.000000000000 0.000000000000 0.000453868815 4 0.000000000000 0.000000000000 0.000453868815 Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= -3.50364062E-05 sigma(3 2)= 0.00000000E+00 sigma(2 2)= -3.50364062E-05 sigma(3 1)= 0.00000000E+00 sigma(3 3)= -1.99359243E-05 sigma(2 1)= 0.00000000E+00 -Cartesian components of stress tensor (GPa) [Pressure= 8.8272E-01 GPa] - sigma(1 1)= -1.03080649E+00 sigma(3 2)= 0.00000000E+00 - sigma(2 2)= -1.03080649E+00 sigma(3 1)= 0.00000000E+00 - sigma(3 3)= -5.86535045E-01 sigma(2 1)= 0.00000000E+00 ================================================================================ == DATASET 2 ================================================================== - nproc = 1 mkfilename : getwfk/=0, take file _WFK from output of DATASET 1. find_getdtset : getxred/=0, take data from output of dataset with index 1. Exchange-correlation functional for the present dataset will be: LDA: new Teter (4/93) with spin-polarized option - ixc=1 Citation for XC functional: S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996) Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1): R(1)= 6.4951905 3.7500000 0.0000000 G(1)= 0.0769800 0.1333333 0.0000000 R(2)= -6.4951905 3.7500000 0.0000000 G(2)= -0.0769800 0.1333333 0.0000000 R(3)= 0.0000000 0.0000000 12.2633880 G(3)= 0.0000000 0.0000000 0.0815435 Unit cell volume ucvol= 5.9739781E+02 bohr^3 Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 1.20000000E+02 degrees getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 18 18 30 ecut(hartree)= 6.615 => boxcut(ratio)= 2.07717 --- Pseudopotential description ------------------------------------------------ - pspini: atom type 1 psp file is /home/buildbot/bb/ABINIT_GIT/abiref_gnu_5.3_openmpi/torrent_pimd/tests/Psps_for_tests/13al.pspnc - pspatm: opening atomic psp file /home/buildbot/bb/ABINIT_GIT/abiref_gnu_5.3_openmpi/torrent_pimd/tests/Psps_for_tests/13al.pspnc - Troullier-Martins psp for element Al Thu Oct 27 17:31:05 EDT 1994 - 13.00000 3.00000 940714 znucl, zion, pspdat 1 1 2 2 2001 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well 0 4.657 11.889 1 2.2761078 l,e99.0,e99.9,nproj,rcpsp 0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm 1 1.829 2.761 1 2.2761078 l,e99.0,e99.9,nproj,rcpsp 0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm 2 0.000 0.000 0 2.2761078 l,e99.0,e99.9,nproj,rcpsp 0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm 2.09673076353074 0.12648111154518 1.01742091001718 rchrg,fchrg,qchrg pspatm : epsatm= 0.22155260 --- l ekb(1:nproj) --> 0 2.540658 1 1.353815 pspatm: atomic psp has been read and splines computed - pspini: atom type 2 psp file is /home/buildbot/bb/ABINIT_GIT/abiref_gnu_5.3_openmpi/torrent_pimd/tests/Psps_for_tests/33as.pspnc - pspatm: opening atomic psp file /home/buildbot/bb/ABINIT_GIT/abiref_gnu_5.3_openmpi/torrent_pimd/tests/Psps_for_tests/33as.pspnc - Troullier-Martins psp for element As Thu Oct 27 17:37:14 EDT 1994 - 33.00000 5.00000 940714 znucl, zion, pspdat 1 1 1 1 2001 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well 0 4.772 10.829 1 2.5306160 l,e99.0,e99.9,nproj,rcpsp 0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm 1 2.745 5.580 0 2.5306160 l,e99.0,e99.9,nproj,rcpsp 0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm 2.05731715564010 0.36322996461007 2.76014815959125 rchrg,fchrg,qchrg pspatm : epsatm= 27.20579911 --- l ekb(1:nproj) --> 0 0.838751 pspatm: atomic psp has been read and splines computed -------------------------------------------------------------------------------- -inwffil : will read wavefunctions from disk file telast_1o_DS1_WFK _setup2: Arith. and geom. avg. npw (full set) are 485.938 485.925 ================================================================================ === [ionmov= 2] Broyden-Fletcher-Goldfard-Shanno method (forces) ================================================================================ --- Iteration: ( 1/12) Internal Cycle: (1/1) -------------------------------------------------------------------------------- ---SELF-CONSISTENT-FIELD CONVERGENCE-------------------------------------------- iter Etot(hartree) deltaE(h) residm vres2 diffor maxfor ETOT 1 -20.270828222573 -2.027E+01 7.842E-29 5.496E-21 1.067E-08 1.067E-08 At SCF step 1 vres2 = 5.50E-21 < tolvrs= 1.00E-18 =>converged. Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= -3.50364064E-05 sigma(3 2)= 0.00000000E+00 sigma(2 2)= -3.50364064E-05 sigma(3 1)= 0.00000000E+00 sigma(3 3)= -1.99359246E-05 sigma(2 1)= 0.00000000E+00 Integrated electronic density in atomic spheres: ------------------------------------------------ Atom Sphere_radius Integrated_density 1 2.00000 0.96558776 2 2.00000 0.96558776 3 2.00000 2.52116651 4 2.00000 2.52116651 ---OUTPUT----------------------------------------------------------------------- Cartesian coordinates (xcart) [bohr] -2.16506350946110E+00 3.75000000000000E+00 0.00000000000000E+00 2.16506350946110E+00 3.75000000000000E+00 6.13169400000000E+00 -2.16506350946110E+00 3.75000000000000E+00 4.60433646938489E+00 2.16506350946110E+00 3.75000000000000E+00 1.07360304693849E+01 Reduced coordinates (xred) 3.33333333333333E-01 6.66666666666667E-01 0.00000000000000E+00 6.66666666666667E-01 3.33333333333333E-01 5.00000000000000E-01 3.33333333333333E-01 6.66666666666667E-01 3.75453868815444E-01 6.66666666666667E-01 3.33333333333333E-01 8.75453868815444E-01 Cartesian forces (fcart) [Ha/bohr]; max,rms= 1.06696E-08 6.16008E-09 (free atoms) -3.63726676652709E-32 6.29993084030669E-32 -1.06695778114474E-08 -3.63726676652709E-32 6.29993084030669E-32 -1.06695778114474E-08 -3.63726676652709E-32 6.29993084030669E-32 1.06695778114474E-08 1.09118002995813E-31 -1.88997925209201E-31 1.06695778114474E-08 Reduced forces (fred) -4.73270420179521E-47 -4.72494813023002E-31 1.30845172497971E-07 -4.73270420179521E-47 -4.72494813023002E-31 1.30845172497971E-07 -4.73270420179521E-47 -4.72494813023002E-31 -1.30845172497971E-07 2.21325220692603E-46 1.41748443906901E-30 -1.30845172497971E-07 Scale of Primitive Cell (acell) [bohr] 7.50000000000000E+00 7.50000000000000E+00 1.22633880000000E+01 Real space primitive translations (rprimd) [bohr] 6.49519052838329E+00 3.75000000000000E+00 0.00000000000000E+00 -6.49519052838329E+00 3.75000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 1.22633880000000E+01 Unitary Cell Volume (ucvol) [Bohr^3]= 5.97397811876170E+02 Angles (23,13,12)= [degrees] 9.00000000000000E+01 9.00000000000000E+01 1.20000000000000E+02 Lengths [Bohr] 7.50000000000000E+00 7.50000000000000E+00 1.22633880000000E+01 Stress tensor in cartesian coordinates (strten) [Ha/bohr^3] -3.50364064360485E-05 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 -3.50364064360454E-05 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 -1.99359246389596E-05 Total energy (etotal) [Ha]= -2.02708282225735E+01 --- Iteration: ( 2/12) Internal Cycle: (1/1) -------------------------------------------------------------------------------- ---SELF-CONSISTENT-FIELD CONVERGENCE-------------------------------------------- iter Etot(hartree) deltaE(h) residm vres2 diffor maxfor ETOT 1 -20.270868764512 -2.027E+01 3.515E-11 3.170E-03 1.929E-05 1.930E-05 ETOT 2 -20.270873094745 -4.330E-06 2.541E-12 2.126E-04 7.200E-05 9.130E-05 ETOT 3 -20.270873418196 -3.235E-07 1.878E-09 1.776E-05 3.079E-06 8.822E-05 ETOT 4 -20.270873435402 -1.721E-08 6.541E-11 2.287E-07 3.536E-07 8.787E-05 ETOT 5 -20.270873435505 -1.026E-10 4.446E-13 2.609E-09 2.638E-07 8.813E-05 ETOT 6 -20.270873435507 -1.730E-12 2.748E-14 9.140E-11 1.899E-07 8.794E-05 ETOT 7 -20.270873435507 -1.599E-13 1.583E-15 1.133E-12 3.818E-08 8.798E-05 ETOT 8 -20.270873435507 1.386E-13 8.559E-18 1.512E-14 2.973E-09 8.798E-05 ETOT 9 -20.270873435507 -1.279E-13 4.520E-20 2.480E-16 3.404E-10 8.798E-05 ETOT 10 -20.270873435507 9.948E-14 2.065E-21 2.238E-18 1.610E-11 8.798E-05 ETOT 11 -20.270873435507 -5.684E-14 6.486E-24 1.395E-20 2.310E-12 8.798E-05 At SCF step 11 vres2 = 1.39E-20 < tolvrs= 1.00E-18 =>converged. Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= -2.71305168E-05 sigma(3 2)= 0.00000000E+00 sigma(2 2)= -2.71305168E-05 sigma(3 1)= 0.00000000E+00 sigma(3 3)= -1.44719848E-05 sigma(2 1)= 0.00000000E+00 Integrated electronic density in atomic spheres: ------------------------------------------------ Atom Sphere_radius Integrated_density 1 2.00000 0.96673371 2 2.00000 0.96673371 3 2.00000 2.52500710 4 2.00000 2.52500710 ---OUTPUT----------------------------------------------------------------------- Cartesian coordinates (xcart) [bohr] -2.16733919081342E+00 3.75394159572406E+00 0.00000000000000E+00 2.16733919081342E+00 3.75394159572406E+00 6.13536122968479E+00 -2.16733919081342E+00 3.75394159572406E+00 4.60709023120683E+00 2.16733919081342E+00 3.75394159572406E+00 1.07424514608916E+01 Reduced coordinates (xred) 3.33333333333333E-01 6.66666666666667E-01 0.00000000000000E+00 6.66666666666667E-01 3.33333333333333E-01 5.00000000000000E-01 3.33333333333333E-01 6.66666666666667E-01 3.75453869685479E-01 6.66666666666667E-01 3.33333333333333E-01 8.75453869685479E-01 Cartesian forces (fcart) [Ha/bohr]; max,rms= 8.79778E-05 5.07940E-05 (free atoms) 4.04418524164311E-32 -7.00473431374609E-32 -8.79778259418717E-05 4.04418524164311E-32 -7.00473431374609E-32 -8.79778259418717E-05 -2.02209262082156E-31 7.00473431374609E-32 8.79778259418717E-05 1.21325557249293E-31 7.00473431374609E-32 8.79778259418717E-05 Reduced forces (fred) 2.66094094920425E-47 5.25907270147341E-31 1.07955148471143E-03 2.66094094920425E-47 5.25907270147341E-31 1.07955148471143E-03 1.05181454029468E-30 -1.57772181044202E-30 -1.07955148471143E-03 -1.05181454029468E-30 5.25907270147341E-31 -1.07955148471143E-03 Scale of Primitive Cell (acell) [bohr] 7.50788319144811E+00 7.50788319144811E+00 1.22707224593696E+01 Real space primitive translations (rprimd) [bohr] 6.50201757244025E+00 3.75394159572406E+00 0.00000000000000E+00 -6.50201757244025E+00 3.75394159572406E+00 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 1.22707224593696E+01 Unitary Cell Volume (ucvol) [Bohr^3]= 5.99012354048222E+02 Angles (23,13,12)= [degrees] 9.00000000000000E+01 9.00000000000000E+01 1.20000000000000E+02 Lengths [Bohr] 7.50788319144811E+00 7.50788319144811E+00 1.22707224593696E+01 Stress tensor in cartesian coordinates (strten) [Ha/bohr^3] -2.71305168343624E-05 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 -2.71305168343576E-05 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 -1.44719848006419E-05 Total energy (etotal) [Ha]= -2.02708734355068E+01 Difference of energy with previous step (new-old): Absolute (Ha)=-4.52129E-05 Relative =-2.23044E-06 --- Iteration: ( 3/12) Internal Cycle: (1/1) -------------------------------------------------------------------------------- ---SELF-CONSISTENT-FIELD CONVERGENCE-------------------------------------------- iter Etot(hartree) deltaE(h) residm vres2 diffor maxfor ETOT 1 -20.270887218939 -2.027E+01 1.819E-10 3.538E-02 4.531E-05 1.333E-04 ETOT 2 -20.270935772849 -4.855E-05 3.368E-11 2.406E-03 2.358E-04 3.691E-04 ETOT 3 -20.270939461813 -3.689E-06 2.154E-08 2.032E-04 1.078E-05 3.583E-04 ETOT 4 -20.270939660413 -1.986E-07 7.642E-10 2.663E-06 9.279E-07 3.574E-04 ETOT 5 -20.270939661607 -1.194E-09 4.866E-12 3.043E-08 7.314E-07 3.581E-04 ETOT 6 -20.270939661626 -1.985E-11 2.886E-13 1.032E-09 6.027E-07 3.575E-04 ETOT 7 -20.270939661627 -9.557E-13 1.790E-14 1.373E-11 1.254E-07 3.576E-04 ETOT 8 -20.270939661627 -2.132E-14 1.152E-16 1.914E-13 1.072E-08 3.576E-04 ETOT 9 -20.270939661627 -2.132E-14 5.933E-19 3.170E-15 1.227E-09 3.576E-04 ETOT 10 -20.270939661627 4.619E-14 2.728E-20 2.766E-17 5.811E-11 3.576E-04 ETOT 11 -20.270939661627 -1.066E-13 7.891E-23 1.738E-19 8.497E-12 3.576E-04 At SCF step 11 vres2 = 1.74E-19 < tolvrs= 1.00E-18 =>converged. Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= -9.38618347E-07 sigma(3 2)= 0.00000000E+00 sigma(2 2)= -9.38618347E-07 sigma(3 1)= 0.00000000E+00 sigma(3 3)= 2.86374528E-06 sigma(2 1)= 0.00000000E+00 Integrated electronic density in atomic spheres: ------------------------------------------------ Atom Sphere_radius Integrated_density 1 2.00000 0.92186119 2 2.00000 0.92186119 3 2.00000 2.53780784 4 2.00000 2.53780784 ---OUTPUT----------------------------------------------------------------------- Cartesian coordinates (xcart) [bohr] -2.17503598426847E+00 3.76727283304356E+00 0.00000000000000E+00 2.17503598426847E+00 3.76727283304356E+00 6.14699135220447E+00 -2.17503598426847E+00 3.76727283304356E+00 4.61620654221671E+00 2.17503598426847E+00 3.76727283304356E+00 1.07631978944212E+01 Reduced coordinates (xred) 3.33333333333333E-01 6.66666666666667E-01 0.00000000000000E+00 6.66666666666667E-01 3.33333333333333E-01 5.00000000000000E-01 3.33333333333333E-01 6.66666666666667E-01 3.75485036314653E-01 6.66666666666667E-01 3.33333333333333E-01 8.75485036314653E-01 Cartesian forces (fcart) [Ha/bohr]; max,rms= 3.57613E-04 2.06468E-04 (free atoms) -0.00000000000000E+00 -0.00000000000000E+00 -3.57613203131845E-04 -0.00000000000000E+00 -0.00000000000000E+00 -3.57613203131845E-04 -0.00000000000000E+00 -0.00000000000000E+00 3.57613203131845E-04 -0.00000000000000E+00 -0.00000000000000E+00 3.57613203131845E-04 Reduced forces (fred) 0.00000000000000E+00 -0.00000000000000E+00 4.39649053417119E-03 0.00000000000000E+00 -0.00000000000000E+00 4.39649053417119E-03 -0.00000000000000E+00 -0.00000000000000E+00 -4.39649053417119E-03 -0.00000000000000E+00 -0.00000000000000E+00 -4.39649053417119E-03 Scale of Primitive Cell (acell) [bohr] 7.53454566608713E+00 7.53454566608713E+00 1.22939827044089E+01 Real space primitive translations (rprimd) [bohr] 6.52510795280540E+00 3.76727283304356E+00 0.00000000000000E+00 -6.52510795280540E+00 3.76727283304356E+00 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 1.22939827044089E+01 Unitary Cell Volume (ucvol) [Bohr^3]= 6.04417970653954E+02 Angles (23,13,12)= [degrees] 9.00000000000000E+01 9.00000000000000E+01 1.20000000000000E+02 Lengths [Bohr] 7.53454566608713E+00 7.53454566608713E+00 1.22939827044089E+01 Stress tensor in cartesian coordinates (strten) [Ha/bohr^3] -9.38618346559093E-07 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 -9.38618346557792E-07 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 2.86374528097894E-06 Total energy (etotal) [Ha]= -2.02709396616275E+01 Difference of energy with previous step (new-old): Absolute (Ha)=-6.62261E-05 Relative =-3.26705E-06 --- Iteration: ( 4/12) Internal Cycle: (1/1) -------------------------------------------------------------------------------- ---SELF-CONSISTENT-FIELD CONVERGENCE-------------------------------------------- iter Etot(hartree) deltaE(h) residm vres2 diffor maxfor ETOT 1 -20.270940089267 -2.027E+01 2.620E-12 5.066E-06 1.157E-05 3.460E-04 ETOT 2 -20.270940095710 -6.443E-09 1.021E-15 9.522E-08 3.435E-07 3.464E-04 ETOT 3 -20.270940095791 -8.120E-11 8.500E-13 4.277E-09 3.024E-07 3.467E-04 ETOT 4 -20.270940095795 -3.165E-12 2.644E-14 4.908E-11 1.599E-07 3.465E-04 ETOT 5 -20.270940095795 -4.619E-14 1.198E-15 1.237E-12 2.737E-08 3.466E-04 ETOT 6 -20.270940095795 -1.421E-14 1.336E-17 3.081E-14 4.298E-09 3.466E-04 ETOT 7 -20.270940095795 -9.237E-14 2.476E-19 1.506E-15 2.612E-11 3.466E-04 ETOT 8 -20.270940095795 1.279E-13 1.667E-20 3.062E-17 8.598E-11 3.466E-04 ETOT 9 -20.270940095795 -3.197E-14 7.788E-23 5.478E-19 5.514E-12 3.466E-04 At SCF step 9 vres2 = 5.48E-19 < tolvrs= 1.00E-18 =>converged. Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= -6.68382924E-07 sigma(3 2)= 0.00000000E+00 sigma(2 2)= -6.68382924E-07 sigma(3 1)= 0.00000000E+00 sigma(3 3)= 2.74297754E-06 sigma(2 1)= 0.00000000E+00 Integrated electronic density in atomic spheres: ------------------------------------------------ Atom Sphere_radius Integrated_density 1 2.00000 0.92188396 2 2.00000 0.92188396 3 2.00000 2.53788797 4 2.00000 2.53788797 ---OUTPUT----------------------------------------------------------------------- Cartesian coordinates (xcart) [bohr] -2.17517016667651E+00 3.76750524379178E+00 0.00000000000000E+00 2.17517016667651E+00 3.76750524379178E+00 6.14656526765700E+00 -2.17517016667651E+00 3.76750524379178E+00 4.61625122596875E+00 2.17517016667651E+00 3.76750524379178E+00 1.07628164936257E+01 Reduced coordinates (xred) 3.33333333333333E-01 6.66666666666667E-01 0.00000000000000E+00 6.66666666666667E-01 3.33333333333333E-01 5.00000000000000E-01 3.33333333333333E-01 6.66666666666667E-01 3.75514700076423E-01 6.66666666666667E-01 3.33333333333333E-01 8.75514700076423E-01 Cartesian forces (fcart) [Ha/bohr]; max,rms= 3.46551E-04 2.00081E-04 (free atoms) -0.00000000000000E+00 -0.00000000000000E+00 -3.46550788422610E-04 -0.00000000000000E+00 -0.00000000000000E+00 -3.46550788422610E-04 -0.00000000000000E+00 -0.00000000000000E+00 3.46550788422610E-04 -0.00000000000000E+00 -0.00000000000000E+00 3.46550788422610E-04 Reduced forces (fred) 0.00000000000000E+00 -0.00000000000000E+00 4.26019407919513E-03 0.00000000000000E+00 -0.00000000000000E+00 4.26019407919513E-03 -0.00000000000000E+00 -0.00000000000000E+00 -4.26019407919513E-03 -0.00000000000000E+00 -0.00000000000000E+00 -4.26019407919513E-03 Scale of Primitive Cell (acell) [bohr] 7.53501048758356E+00 7.53501048758357E+00 1.22931305353140E+01 Real space primitive translations (rprimd) [bohr] 6.52551050002954E+00 3.76750524379178E+00 0.00000000000000E+00 -6.52551050002954E+00 3.76750524379178E+00 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 1.22931305353140E+01 Unitary Cell Volume (ucvol) [Bohr^3]= 6.04450647534680E+02 Angles (23,13,12)= [degrees] 9.00000000000000E+01 9.00000000000000E+01 1.20000000000000E+02 Lengths [Bohr] 7.53501048758356E+00 7.53501048758357E+00 1.22931305353140E+01 Stress tensor in cartesian coordinates (strten) [Ha/bohr^3] -6.68382923676384E-07 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 -6.68382923673782E-07 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 2.74297754304003E-06 Total energy (etotal) [Ha]= -2.02709400957947E+01 Difference of energy with previous step (new-old): Absolute (Ha)=-4.34167E-07 Relative =-2.14182E-08 --- Iteration: ( 5/12) Internal Cycle: (1/1) -------------------------------------------------------------------------------- ---SELF-CONSISTENT-FIELD CONVERGENCE-------------------------------------------- iter Etot(hartree) deltaE(h) residm vres2 diffor maxfor ETOT 1 -20.270942012988 -2.027E+01 6.890E-10 1.134E-03 1.908E-04 1.558E-04 ETOT 2 -20.270943514951 -1.502E-06 8.325E-13 3.979E-05 2.961E-05 1.262E-04 ETOT 3 -20.270943562297 -4.735E-08 4.373E-10 4.096E-06 6.778E-06 1.330E-04 ETOT 4 -20.270943567581 -5.284E-09 2.749E-11 1.603E-07 1.708E-06 1.312E-04 ETOT 5 -20.270943567700 -1.194E-10 5.377E-13 1.471E-09 4.854E-07 1.308E-04 ETOT 6 -20.270943567701 -1.165E-12 1.525E-14 4.667E-11 1.255E-07 1.309E-04 ETOT 7 -20.270943567701 -8.527E-14 8.212E-16 1.347E-12 2.046E-08 1.309E-04 ETOT 8 -20.270943567701 1.457E-13 4.784E-18 1.654E-14 3.788E-09 1.309E-04 ETOT 9 -20.270943567701 -1.776E-14 1.050E-19 6.311E-17 2.145E-10 1.309E-04 ETOT 10 -20.270943567701 -1.101E-13 2.651E-22 4.620E-19 2.099E-11 1.309E-04 At SCF step 10 vres2 = 4.62E-19 < tolvrs= 1.00E-18 =>converged. Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= 9.30687276E-07 sigma(3 2)= 0.00000000E+00 sigma(2 2)= 9.30687276E-07 sigma(3 1)= 0.00000000E+00 sigma(3 3)= -6.14419830E-07 sigma(2 1)= 0.00000000E+00 Integrated electronic density in atomic spheres: ------------------------------------------------ Atom Sphere_radius Integrated_density 1 2.00000 0.92185925 2 2.00000 0.92185925 3 2.00000 2.53786771 4 2.00000 2.53786771 ---OUTPUT----------------------------------------------------------------------- Cartesian coordinates (xcart) [bohr] -2.17648621614507E+00 3.76978470833660E+00 0.00000000000000E+00 2.17648621614507E+00 3.76978470833660E+00 6.13891193242432E+00 -2.17648621614507E+00 3.76978470833660E+00 4.61629098089205E+00 2.17648621614507E+00 3.76978470833660E+00 1.07552029133163E+01 Reduced coordinates (xred) 3.33333333333333E-01 6.66666666666667E-01 0.00000000000000E+00 6.66666666666667E-01 3.33333333333333E-01 5.00000000000000E-01 3.33333333333333E-01 6.66666666666667E-01 3.75986089367878E-01 6.66666666666667E-01 3.33333333333333E-01 8.75986089367876E-01 Cartesian forces (fcart) [Ha/bohr]; max,rms= 1.30873E-04 7.55595E-05 (free atoms) -3.52379030296182E-32 1.65663275655742E-31 -1.30872965084211E-04 -3.52379030296182E-32 1.65663275655742E-31 -1.30872965084211E-04 -3.52379030296182E-32 -2.52854473369291E-31 1.30872965084211E-04 1.05713709088854E-31 -7.84720779421936E-32 1.30872965084211E-04 Reduced forces (fred) -3.94430452610506E-31 -8.54599313989429E-31 1.60683521397443E-03 -3.94430452610506E-31 -8.54599313989429E-31 1.60683521397443E-03 1.18329135783152E-30 7.23122496452594E-31 -1.60683521397443E-03 -3.94430452610506E-31 9.86076131526265E-31 -1.60683521397443E-03 Scale of Primitive Cell (acell) [bohr] 7.53956941667320E+00 7.53956941667320E+00 1.22778238648486E+01 Real space primitive translations (rprimd) [bohr] 6.52945864843522E+00 3.76978470833660E+00 0.00000000000000E+00 -6.52945864843522E+00 3.76978470833660E+00 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 1.22778238648486E+01 Unitary Cell Volume (ucvol) [Bohr^3]= 6.04428757058524E+02 Angles (23,13,12)= [degrees] 9.00000000000000E+01 9.00000000000000E+01 1.20000000000000E+02 Lengths [Bohr] 7.53956941667321E+00 7.53956941667321E+00 1.22778238648486E+01 Stress tensor in cartesian coordinates (strten) [Ha/bohr^3] 9.30687276431193E-07 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 9.30687276432928E-07 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 -6.14419829727316E-07 Total energy (etotal) [Ha]= -2.02709435677014E+01 Difference of energy with previous step (new-old): Absolute (Ha)=-3.47191E-06 Relative =-1.71275E-07 --- Iteration: ( 6/12) Internal Cycle: (1/1) -------------------------------------------------------------------------------- ---SELF-CONSISTENT-FIELD CONVERGENCE-------------------------------------------- iter Etot(hartree) deltaE(h) residm vres2 diffor maxfor ETOT 1 -20.270943631890 -2.027E+01 5.788E-12 2.529E-05 2.219E-05 1.087E-04 ETOT 2 -20.270943668437 -3.655E-08 5.826E-14 1.774E-06 1.952E-05 8.916E-05 ETOT 3 -20.270943671333 -2.895E-09 1.953E-11 1.191E-07 1.497E-06 9.066E-05 ETOT 4 -20.270943671438 -1.056E-10 4.052E-13 2.408E-09 1.987E-08 9.064E-05 ETOT 5 -20.270943671440 -1.535E-12 2.269E-14 4.886E-11 1.186E-07 9.052E-05 ETOT 6 -20.270943671440 -1.066E-14 7.577E-16 8.501E-13 3.294E-08 9.055E-05 ETOT 7 -20.270943671440 2.487E-14 3.481E-18 7.346E-15 1.074E-09 9.055E-05 ETOT 8 -20.270943671440 -1.421E-14 1.345E-20 5.844E-17 1.300E-10 9.055E-05 ETOT 9 -20.270943671440 6.750E-14 2.566E-22 7.560E-19 1.917E-11 9.055E-05 At SCF step 9 vres2 = 7.56E-19 < tolvrs= 1.00E-18 =>converged. Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= 4.48429406E-07 sigma(3 2)= 0.00000000E+00 sigma(2 2)= 4.48429406E-07 sigma(3 1)= 0.00000000E+00 sigma(3 3)= -9.46578048E-07 sigma(2 1)= 0.00000000E+00 Integrated electronic density in atomic spheres: ------------------------------------------------ Atom Sphere_radius Integrated_density 1 2.00000 0.92178628 2 2.00000 0.92178628 3 2.00000 2.53762807 4 2.00000 2.53762807 ---OUTPUT----------------------------------------------------------------------- Cartesian coordinates (xcart) [bohr] -2.17640916482172E+00 3.76965125152976E+00 0.00000000000000E+00 2.17640916482172E+00 3.76965125152976E+00 6.13830615840756E+00 -2.17640916482172E+00 3.76965125152976E+00 4.61638091635187E+00 2.17640916482172E+00 3.76965125152976E+00 1.07546870747594E+01 Reduced coordinates (xred) 3.33333333333333E-01 6.66666666666667E-01 0.00000000000000E+00 6.66666666666667E-01 3.33333333333333E-01 5.00000000000000E-01 3.33333333333333E-01 6.66666666666667E-01 3.76030520246117E-01 6.66666666666667E-01 3.33333333333333E-01 8.76030520246117E-01 Cartesian forces (fcart) [Ha/bohr]; max,rms= 9.05539E-05 5.22813E-05 (free atoms) -5.03416436509100E-33 -1.74388569079806E-32 -9.05538930571458E-05 -5.03416436509100E-33 -1.74388569079806E-32 -9.05538930571458E-05 2.36605725159277E-31 -1.74388569079806E-32 9.05538930571458E-05 -2.26537396429095E-31 5.23165707239419E-32 9.05538930571458E-05 Reduced forces (fred) 9.86076131526265E-32 3.28692043842088E-32 1.11169503884091E-03 9.86076131526265E-32 3.28692043842088E-32 1.11169503884091E-03 -1.47911419728940E-30 1.61059101482623E-30 -1.11169503884091E-03 1.28189897098414E-30 -1.67632942359465E-30 -1.11169503884091E-03 Scale of Primitive Cell (acell) [bohr] 7.53930250305953E+00 7.53930250305953E+00 1.22766123168151E+01 Real space primitive translations (rprimd) [bohr] 6.52922749446516E+00 3.76965125152976E+00 0.00000000000000E+00 -6.52922749446516E+00 3.76965125152976E+00 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 1.22766123168151E+01 Unitary Cell Volume (ucvol) [Bohr^3]= 6.04326322751859E+02 Angles (23,13,12)= [degrees] 9.00000000000000E+01 9.00000000000000E+01 1.20000000000000E+02 Lengths [Bohr] 7.53930250305953E+00 7.53930250305953E+00 1.22766123168151E+01 Stress tensor in cartesian coordinates (strten) [Ha/bohr^3] 4.48429405690374E-07 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 4.48429405692542E-07 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 -9.46578047578486E-07 Total energy (etotal) [Ha]= -2.02709436714399E+01 Difference of energy with previous step (new-old): Absolute (Ha)=-1.03739E-07 Relative =-5.11760E-09 --- Iteration: ( 7/12) Internal Cycle: (1/1) -------------------------------------------------------------------------------- ---SELF-CONSISTENT-FIELD CONVERGENCE-------------------------------------------- iter Etot(hartree) deltaE(h) residm vres2 diffor maxfor ETOT 1 -20.270943709221 -2.027E+01 1.586E-12 1.579E-05 2.060E-05 6.996E-05 ETOT 2 -20.270943732317 -2.310E-08 2.972E-14 7.414E-07 2.681E-05 4.315E-05 ETOT 3 -20.270943733587 -1.270E-09 1.175E-11 4.694E-08 1.925E-06 4.507E-05 ETOT 4 -20.270943733637 -5.036E-11 2.609E-13 1.661E-09 1.119E-07 4.496E-05 ETOT 5 -20.270943733638 -1.073E-12 1.748E-14 3.897E-11 8.833E-08 4.487E-05 ETOT 6 -20.270943733638 -1.528E-13 4.545E-16 7.992E-13 2.663E-08 4.490E-05 ETOT 7 -20.270943733638 5.684E-14 1.545E-18 1.130E-14 6.231E-10 4.490E-05 ETOT 8 -20.270943733638 -1.776E-14 1.912E-20 1.185E-16 5.480E-11 4.490E-05 ETOT 9 -20.270943733638 8.527E-14 4.318E-22 8.588E-19 2.772E-11 4.490E-05 At SCF step 9 vres2 = 8.59E-19 < tolvrs= 1.00E-18 =>converged. Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= 1.55099670E-08 sigma(3 2)= 0.00000000E+00 sigma(2 2)= 1.55099670E-08 sigma(3 1)= 0.00000000E+00 sigma(3 3)= -8.30604594E-07 sigma(2 1)= 0.00000000E+00 Integrated electronic density in atomic spheres: ------------------------------------------------ Atom Sphere_radius Integrated_density 1 2.00000 0.92174513 2 2.00000 0.92174513 3 2.00000 2.53749095 4 2.00000 2.53749095 ---OUTPUT----------------------------------------------------------------------- Cartesian coordinates (xcart) [bohr] -2.17631710052513E+00 3.76949179149051E+00 0.00000000000000E+00 2.17631710052513E+00 3.76949179149051E+00 6.13822611615077E+00 -2.17631710052513E+00 3.76949179149051E+00 4.61674405522634E+00 2.17631710052513E+00 3.76949179149051E+00 1.07549701713771E+01 Reduced coordinates (xred) 3.33333333333333E-01 6.66666666666667E-01 0.00000000000000E+00 6.66666666666667E-01 3.33333333333333E-01 5.00000000000000E-01 3.33333333333333E-01 6.66666666666667E-01 3.76065003786587E-01 6.66666666666667E-01 3.33333333333333E-01 8.76065003786587E-01 Cartesian forces (fcart) [Ha/bohr]; max,rms= 4.49008E-05 2.59235E-05 (free atoms) -0.00000000000000E+00 -0.00000000000000E+00 -4.49008075788688E-05 -0.00000000000000E+00 -0.00000000000000E+00 -4.49008075788688E-05 -0.00000000000000E+00 -0.00000000000000E+00 4.49008075788688E-05 -0.00000000000000E+00 -0.00000000000000E+00 4.49008075788688E-05 Reduced forces (fred) 0.00000000000000E+00 -0.00000000000000E+00 5.51222619433746E-04 0.00000000000000E+00 -0.00000000000000E+00 5.51222619433746E-04 -0.00000000000000E+00 -0.00000000000000E+00 -5.51222619433746E-04 -0.00000000000000E+00 -0.00000000000000E+00 -5.51222619433746E-04 Scale of Primitive Cell (acell) [bohr] 7.53898358298102E+00 7.53898358298102E+00 1.22764522323015E+01 Real space primitive translations (rprimd) [bohr] 6.52895130157539E+00 3.76949179149051E+00 0.00000000000000E+00 -6.52895130157539E+00 3.76949179149051E+00 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 1.22764522323015E+01 Unitary Cell Volume (ucvol) [Bohr^3]= 6.04267316985756E+02 Angles (23,13,12)= [degrees] 9.00000000000000E+01 9.00000000000000E+01 1.20000000000000E+02 Lengths [Bohr] 7.53898358298102E+00 7.53898358298102E+00 1.22764522323015E+01 Stress tensor in cartesian coordinates (strten) [Ha/bohr^3] 1.55099670069020E-08 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 1.55099670082030E-08 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 -8.30604593982792E-07 Total energy (etotal) [Ha]= -2.02709437336381E+01 Difference of energy with previous step (new-old): Absolute (Ha)=-6.21982E-08 Relative =-3.06834E-09 --- Iteration: ( 8/12) Internal Cycle: (1/1) -------------------------------------------------------------------------------- ---SELF-CONSISTENT-FIELD CONVERGENCE-------------------------------------------- iter Etot(hartree) deltaE(h) residm vres2 diffor maxfor ETOT 1 -20.270943754189 -2.027E+01 1.674E-12 6.476E-06 1.342E-05 3.148E-05 ETOT 2 -20.270943763175 -8.986E-09 1.531E-14 1.027E-07 2.138E-05 1.010E-05 ETOT 3 -20.270943763326 -1.516E-10 3.453E-12 7.077E-09 1.650E-06 1.175E-05 ETOT 4 -20.270943763334 -7.237E-12 1.495E-13 2.561E-10 3.253E-07 1.142E-05 ETOT 5 -20.270943763334 -1.030E-13 1.183E-15 7.127E-12 1.975E-08 1.144E-05 ETOT 6 -20.270943763334 -1.457E-13 6.550E-17 1.827E-13 5.261E-09 1.145E-05 ETOT 7 -20.270943763334 6.395E-14 5.581E-19 3.004E-15 6.577E-11 1.145E-05 ETOT 8 -20.270943763334 0.000E+00 5.295E-21 6.778E-17 6.852E-12 1.145E-05 ETOT 9 -20.270943763334 0.000E+00 6.447E-23 4.051E-19 2.383E-12 1.145E-05 At SCF step 9 vres2 = 4.05E-19 < tolvrs= 1.00E-18 =>converged. Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= -1.23192434E-07 sigma(3 2)= 0.00000000E+00 sigma(2 2)= -1.23192434E-07 sigma(3 1)= 0.00000000E+00 sigma(3 3)= -4.23321184E-07 sigma(2 1)= 0.00000000E+00 Integrated electronic density in atomic spheres: ------------------------------------------------ Atom Sphere_radius Integrated_density 1 2.00000 0.92175350 2 2.00000 0.92175350 3 2.00000 2.53751685 4 2.00000 2.53751685 ---OUTPUT----------------------------------------------------------------------- Cartesian coordinates (xcart) [bohr] -2.17628571196262E+00 3.76943742490546E+00 0.00000000000000E+00 2.17628571196262E+00 3.76943742490546E+00 6.13850800290374E+00 -2.17628571196262E+00 3.76943742490546E+00 4.61719101287686E+00 2.17628571196262E+00 3.76943742490546E+00 1.07556990157806E+01 Reduced coordinates (xred) 3.33333333333333E-01 6.66666666666667E-01 0.00000000000000E+00 6.66666666666666E-01 3.33333333333333E-01 5.00000000000000E-01 3.33333333333333E-01 6.66666666666667E-01 3.76084140534863E-01 6.66666666666666E-01 3.33333333333333E-01 8.76084140534862E-01 Cartesian forces (fcart) [Ha/bohr]; max,rms= 1.14492E-05 6.61018E-06 (free atoms) -2.01377997404987E-32 -3.48796923031911E-32 -1.14491691532875E-05 -2.01377997404987E-32 -3.48796923031911E-32 -1.14491691532875E-05 -2.01377997404987E-32 -3.48796923031911E-32 1.14491691532875E-05 6.04133992214960E-32 1.04639076909573E-31 1.14491691532875E-05 Reduced forces (fred) 2.62953635073671E-31 4.02186709095388E-47 1.40561632948108E-04 2.62953635073671E-31 4.02186709095388E-47 1.40561632948108E-04 2.62953635073671E-31 4.02186709095388E-47 -1.40561632948108E-04 -7.88860905221012E-31 -1.12603238368137E-46 -1.40561632948108E-04 Scale of Primitive Cell (acell) [bohr] 7.53887484981092E+00 7.53887484981092E+00 1.22770160058075E+01 Real space primitive translations (rprimd) [bohr] 6.52885713588785E+00 3.76943742490546E+00 0.00000000000000E+00 -6.52885713588785E+00 3.76943742490546E+00 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 1.22770160058075E+01 Unitary Cell Volume (ucvol) [Bohr^3]= 6.04277635736829E+02 Angles (23,13,12)= [degrees] 9.00000000000000E+01 9.00000000000000E+01 1.20000000000000E+02 Lengths [Bohr] 7.53887484981092E+00 7.53887484981092E+00 1.22770160058075E+01 Stress tensor in cartesian coordinates (strten) [Ha/bohr^3] -1.23192433704265E-07 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 -1.23192433700795E-07 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 -4.23321183595175E-07 Total energy (etotal) [Ha]= -2.02709437633338E+01 Difference of energy with previous step (new-old): Absolute (Ha)=-2.96956E-08 Relative =-1.46494E-09 --- Iteration: ( 9/12) Internal Cycle: (1/1) -------------------------------------------------------------------------------- ---SELF-CONSISTENT-FIELD CONVERGENCE-------------------------------------------- iter Etot(hartree) deltaE(h) residm vres2 diffor maxfor ETOT 1 -20.270943767563 -2.027E+01 3.801E-13 3.214E-06 4.409E-06 7.040E-06 ETOT 2 -20.270943771800 -4.237E-09 3.163E-15 1.387E-07 9.391E-06 2.351E-06 ETOT 3 -20.270943771981 -1.805E-10 1.558E-12 1.498E-08 6.836E-07 1.667E-06 ETOT 4 -20.270943771997 -1.658E-11 9.679E-14 4.608E-10 9.371E-08 1.761E-06 ETOT 5 -20.270943771998 -3.837E-13 2.264E-15 8.752E-12 3.106E-08 1.792E-06 ETOT 6 -20.270943771998 4.619E-14 1.662E-16 1.802E-13 1.238E-08 1.780E-06 ETOT 7 -20.270943771998 -2.842E-14 7.105E-19 1.947E-15 1.221E-09 1.781E-06 ETOT 8 -20.270943771998 3.553E-15 5.067E-21 1.704E-17 3.102E-12 1.781E-06 ETOT 9 -20.270943771998 1.066E-13 1.300E-23 3.727E-19 3.157E-12 1.781E-06 At SCF step 9 vres2 = 3.73E-19 < tolvrs= 1.00E-18 =>converged. Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= -6.32277356E-08 sigma(3 2)= 0.00000000E+00 sigma(2 2)= -6.32277355E-08 sigma(3 1)= 0.00000000E+00 sigma(3 3)= -7.04533042E-08 sigma(2 1)= 0.00000000E+00 Integrated electronic density in atomic spheres: ------------------------------------------------ Atom Sphere_radius Integrated_density 1 2.00000 0.92178067 2 2.00000 0.92178067 3 2.00000 2.53760549 4 2.00000 2.53760549 ---OUTPUT----------------------------------------------------------------------- Cartesian coordinates (xcart) [bohr] -2.17629797665857E+00 3.76945866798198E+00 0.00000000000000E+00 2.17629797665856E+00 3.76945866798198E+00 6.13881752464947E+00 -2.17629797665857E+00 3.76945866798198E+00 4.61747625960534E+00 2.17629797665856E+00 3.76945866798198E+00 1.07562937842548E+01 Reduced coordinates (xred) 3.33333333333333E-01 6.66666666666667E-01 0.00000000000000E+00 6.66666666666666E-01 3.33333333333333E-01 5.00000000000000E-01 3.33333333333333E-01 6.66666666666667E-01 3.76088411250585E-01 6.66666666666666E-01 3.33333333333333E-01 8.76088411250584E-01 Cartesian forces (fcart) [Ha/bohr]; max,rms= 1.78090E-06 1.02820E-06 (free atoms) -0.00000000000000E+00 -0.00000000000000E+00 1.78090197554036E-06 -0.00000000000000E+00 -0.00000000000000E+00 1.78090197554036E-06 -0.00000000000000E+00 -0.00000000000000E+00 -1.78090197554036E-06 -0.00000000000000E+00 -0.00000000000000E+00 -1.78090197554036E-06 Reduced forces (fred) -0.00000000000000E+00 -0.00000000000000E+00 -2.18652645142600E-05 -0.00000000000000E+00 -0.00000000000000E+00 -2.18652645142600E-05 0.00000000000000E+00 -0.00000000000000E+00 2.18652645142600E-05 0.00000000000000E+00 -0.00000000000000E+00 2.18652645142600E-05 Scale of Primitive Cell (acell) [bohr] 7.53891733596396E+00 7.53891733596396E+00 1.22776350492989E+01 Real space primitive translations (rprimd) [bohr] 6.52889392997570E+00 3.76945866798198E+00 0.00000000000000E+00 -6.52889392997570E+00 3.76945866798198E+00 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 1.22776350492989E+01 Unitary Cell Volume (ucvol) [Bohr^3]= 6.04314916512026E+02 Angles (23,13,12)= [degrees] 9.00000000000000E+01 9.00000000000000E+01 1.20000000000000E+02 Lengths [Bohr] 7.53891733596396E+00 7.53891733596396E+00 1.22776350492989E+01 Stress tensor in cartesian coordinates (strten) [Ha/bohr^3] -6.32277355515701E-08 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 -6.32277355498354E-08 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 -7.04533041988829E-08 Total energy (etotal) [Ha]= -2.02709437719976E+01 Difference of energy with previous step (new-old): Absolute (Ha)=-8.66380E-09 Relative =-4.27400E-10 --- Iteration: (10/12) Internal Cycle: (1/1) -------------------------------------------------------------------------------- ---SELF-CONSISTENT-FIELD CONVERGENCE-------------------------------------------- iter Etot(hartree) deltaE(h) residm vres2 diffor maxfor ETOT 1 -20.270943772257 -2.027E+01 6.789E-14 2.192E-07 8.522E-07 9.287E-07 ETOT 2 -20.270943772539 -2.814E-10 2.038E-16 1.424E-08 1.129E-07 8.158E-07 ETOT 3 -20.270943772557 -1.870E-11 1.115E-13 1.590E-09 3.620E-08 8.520E-07 ETOT 4 -20.270943772559 -1.602E-12 7.096E-15 2.396E-11 2.935E-09 8.490E-07 ETOT 5 -20.270943772559 -6.040E-14 4.757E-17 1.766E-13 3.231E-09 8.458E-07 ETOT 6 -20.270943772559 1.101E-13 1.148E-18 4.642E-15 1.441E-09 8.472E-07 ETOT 7 -20.270943772559 -6.395E-14 1.105E-19 6.535E-17 2.587E-10 8.470E-07 ETOT 8 -20.270943772559 4.263E-14 1.075E-21 5.275E-19 3.890E-11 8.470E-07 At SCF step 8 vres2 = 5.27E-19 < tolvrs= 1.00E-18 =>converged. Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= -1.02202185E-08 sigma(3 2)= 0.00000000E+00 sigma(2 2)= -1.02202185E-08 sigma(3 1)= 0.00000000E+00 sigma(3 3)= -6.35694432E-10 sigma(2 1)= 0.00000000E+00 Integrated electronic density in atomic spheres: ------------------------------------------------ Atom Sphere_radius Integrated_density 1 2.00000 0.92179058 2 2.00000 0.92179058 3 2.00000 2.53763814 4 2.00000 2.53763814 ---OUTPUT----------------------------------------------------------------------- Cartesian coordinates (xcart) [bohr] -2.17630949720348E+00 3.76947862215111E+00 0.00000000000000E+00 2.17630949720348E+00 3.76947862215111E+00 6.13889317063948E+00 -2.17630949720348E+00 3.76947862215111E+00 4.61750969458154E+00 2.17630949720348E+00 3.76947862215111E+00 1.07564028652210E+01 Reduced coordinates (xred) 3.33333333333333E-01 6.66666666666667E-01 0.00000000000000E+00 6.66666666666666E-01 3.33333333333333E-01 5.00000000000000E-01 3.33333333333333E-01 6.66666666666667E-01 3.76086500141893E-01 6.66666666666666E-01 3.33333333333333E-01 8.76086500141891E-01 Cartesian forces (fcart) [Ha/bohr]; max,rms= 8.47030E-07 4.89033E-07 (free atoms) -0.00000000000000E+00 -0.00000000000000E+00 8.47030054496454E-07 -0.00000000000000E+00 -0.00000000000000E+00 8.47030054496454E-07 -0.00000000000000E+00 -0.00000000000000E+00 -8.47030054496454E-07 -0.00000000000000E+00 -0.00000000000000E+00 -8.47030054496454E-07 Reduced forces (fred) -0.00000000000000E+00 -0.00000000000000E+00 -1.03996540337493E-05 -0.00000000000000E+00 -0.00000000000000E+00 -1.03996540337493E-05 0.00000000000000E+00 -0.00000000000000E+00 1.03996540337493E-05 0.00000000000000E+00 -0.00000000000000E+00 1.03996540337493E-05 Scale of Primitive Cell (acell) [bohr] 7.53895724430222E+00 7.53895724430222E+00 1.22777863412790E+01 Real space primitive translations (rprimd) [bohr] 6.52892849161045E+00 3.76947862215111E+00 0.00000000000000E+00 -6.52892849161045E+00 3.76947862215111E+00 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 1.22777863412790E+01 Unitary Cell Volume (ucvol) [Bohr^3]= 6.04328761373886E+02 Angles (23,13,12)= [degrees] 9.00000000000000E+01 9.00000000000000E+01 1.20000000000000E+02 Lengths [Bohr] 7.53895724430222E+00 7.53895724430222E+00 1.22777863412790E+01 Stress tensor in cartesian coordinates (strten) [Ha/bohr^3] -1.02202185056979E-08 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 -1.02202185043969E-08 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 -6.35694431556227E-10 Total energy (etotal) [Ha]= -2.02709437725589E+01 Difference of energy with previous step (new-old): Absolute (Ha)=-5.61386E-10 Relative =-2.76941E-11 --- Iteration: (11/12) Internal Cycle: (1/1) -------------------------------------------------------------------------------- ---SELF-CONSISTENT-FIELD CONVERGENCE-------------------------------------------- iter Etot(hartree) deltaE(h) residm vres2 diffor maxfor ETOT 1 -20.270943772568 -2.027E+01 1.110E-15 3.394E-09 3.937E-07 4.534E-07 ETOT 2 -20.270943772572 -4.462E-12 8.026E-18 1.426E-10 4.124E-07 4.096E-08 ETOT 3 -20.270943772572 -1.137E-13 2.644E-15 1.696E-11 3.807E-08 7.903E-08 ETOT 4 -20.270943772572 -1.705E-13 8.964E-17 4.787E-13 5.195E-09 7.383E-08 ETOT 5 -20.270943772572 9.592E-14 3.638E-18 1.332E-14 1.205E-09 7.263E-08 ETOT 6 -20.270943772572 -2.842E-14 1.285E-19 1.692E-16 4.326E-10 7.306E-08 ETOT 7 -20.270943772572 1.066E-14 3.178E-22 1.543E-18 4.207E-12 7.306E-08 ETOT 8 -20.270943772572 5.329E-14 2.949E-24 1.315E-20 7.558E-13 7.306E-08 At SCF step 8 vres2 = 1.32E-20 < tolvrs= 1.00E-18 =>converged. Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= -3.76811664E-10 sigma(3 2)= 0.00000000E+00 sigma(2 2)= -3.76811662E-10 sigma(3 1)= 0.00000000E+00 sigma(3 3)= 7.81471509E-10 sigma(2 1)= 0.00000000E+00 Integrated electronic density in atomic spheres: ------------------------------------------------ Atom Sphere_radius Integrated_density 1 2.00000 0.92179175 2 2.00000 0.92179175 3 2.00000 2.53764203 4 2.00000 2.53764203 ---OUTPUT----------------------------------------------------------------------- Cartesian coordinates (xcart) [bohr] -2.17631167225315E+00 3.76948238944763E+00 0.00000000000000E+00 2.17631167225314E+00 3.76948238944763E+00 6.13889775548244E+00 -2.17631167225315E+00 3.76948238944763E+00 4.61750548144676E+00 2.17631167225314E+00 3.76948238944763E+00 1.07564032369292E+01 Reduced coordinates (xred) 3.33333333333333E-01 6.66666666666667E-01 0.00000000000000E+00 6.66666666666666E-01 3.33333333333333E-01 5.00000000000000E-01 3.33333333333333E-01 6.66666666666667E-01 3.76085876110498E-01 6.66666666666666E-01 3.33333333333333E-01 8.76085876110496E-01 Cartesian forces (fcart) [Ha/bohr]; max,rms= 7.30559E-08 4.21788E-08 (free atoms) -5.53782886945862E-32 9.59180096552405E-32 7.30558910747982E-08 -5.53782886945862E-32 9.59180096552405E-32 7.30558910747982E-08 2.51719494066301E-32 -4.35990952978366E-32 -7.30558910747982E-08 8.55846279825423E-32 -1.48236924012644E-31 -7.30558910747982E-08 Reduced forces (fred) 6.34087311462257E-47 -7.23122496452594E-31 -8.96965291487697E-07 6.34087311462257E-47 -7.23122496452594E-31 -8.96965291487697E-07 6.95833924229849E-47 3.28692043842088E-31 8.96965291487697E-07 -5.92385312887924E-47 1.11755294906310E-30 8.96965291487697E-07 Scale of Primitive Cell (acell) [bohr] 7.53896477889527E+00 7.53896477889527E+00 1.22777955109649E+01 Real space primitive translations (rprimd) [bohr] 6.52893501675944E+00 3.76948238944763E+00 0.00000000000000E+00 -6.52893501675944E+00 3.76948238944763E+00 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 1.22777955109649E+01 Unitary Cell Volume (ucvol) [Bohr^3]= 6.04330420677217E+02 Angles (23,13,12)= [degrees] 9.00000000000000E+01 9.00000000000000E+01 1.20000000000000E+02 Lengths [Bohr] 7.53896477889527E+00 7.53896477889527E+00 1.22777955109649E+01 Stress tensor in cartesian coordinates (strten) [Ha/bohr^3] -3.76811663902604E-10 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 -3.76811661734200E-10 0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00 7.81471508597836E-10 Total energy (etotal) [Ha]= -2.02709437725723E+01 Difference of energy with previous step (new-old): Absolute (Ha)=-1.33120E-11 Relative =-6.56704E-13 At Broyd/MD step 11, gradients are converged : max grad (force/stress) = 7.8147E-08 < tolmxf= 1.0000E-06 ha/bohr (free atoms) ================================================================================ ----iterations are completed or convergence reached---- Mean square residual over all n,k,spin= 9.2704E-25; max= 2.9493E-24 reduced coordinates (array xred) for 4 atoms 0.333333333333 0.666666666667 0.000000000000 0.666666666667 0.333333333333 0.500000000000 0.333333333333 0.666666666667 0.376085876110 0.666666666667 0.333333333333 0.876085876110 rms dE/dt= 5.1806E-07; max dE/dt= 9.2165E-07; dE/dt below (all hartree) 1 0.000000000000 0.000000000000 -0.000000872279 2 0.000000000000 0.000000000000 -0.000000872279 3 0.000000000000 0.000000000000 0.000000921652 4 0.000000000000 0.000000000000 0.000000921652 cartesian coordinates (angstrom) at end: 1 -1.15165453574475 1.99472416867706 0.00000000000000 2 1.15165453574475 1.99472416867706 3.24856477806562 3 -1.15165453574475 1.99472416867706 2.44347866132102 4 1.15165453574475 1.99472416867706 5.69204343938663 cartesian forces (hartree/bohr) at end: 1 -0.00000000000000 0.00000000000000 0.00000007305589 2 -0.00000000000000 0.00000000000000 0.00000007305589 3 0.00000000000000 -0.00000000000000 -0.00000007305589 4 0.00000000000000 -0.00000000000000 -0.00000007305589 frms,max,avg= 4.2178838E-08 7.3055891E-08 0.000E+00 0.000E+00 -2.011E-09 h/b cartesian forces (eV/Angstrom) at end: 1 -0.00000000000000 0.00000000000000 0.00000375668465 2 -0.00000000000000 0.00000000000000 0.00000375668465 3 0.00000000000000 -0.00000000000000 -0.00000375668465 4 0.00000000000000 -0.00000000000000 -0.00000375668465 frms,max,avg= 2.1689229E-06 3.7566846E-06 0.000E+00 0.000E+00 -1.034E-07 e/A length scales= 7.538964778895 7.538964778895 12.277795510965 bohr = 3.989448337354 3.989448337354 6.497129556131 angstroms prteigrs : about to open file telast_1o_DS2_EIG Fermi (or HOMO) energy (hartree) = 0.08616 Average Vxc (hartree)= -0.34268 Eigenvalues (hartree) for nkpt= 8 k points: kpt# 1, nband= 8, wtk= 0.03125, kpt= 0.0000 0.0000 0.1250 (reduced coord) -0.35501 -0.30563 -0.11714 0.05113 0.05113 0.06669 0.08616 0.08616 prteigrs : prtvol=0 or 1, do not print more k-points. -------------------------------------------------------------------------------- Components of total free energy (in Hartree) : Kinetic energy = 5.91947827140732E+00 Hartree energy = 1.65285115607650E+00 XC energy = -8.68515356316806E+00 Ewald energy = -1.68697612368113E+01 PspCore energy = 1.45231023395999E+00 Loc. psp. energy= -4.92404864086794E+00 NL psp energy= 1.18338000683125E+00 >>>>>>>>> Etotal= -2.02709437725723E+01 Other information on the energy : Total energy(eV)= -5.51600432199940E+02 ; Band energy (Ha)= -1.4274245107E+00 -------------------------------------------------------------------------------- rms coord change= 2.5802E-04 atom, delta coord (reduced): 1 -0.000000000000 0.000000000000 0.000000000000 2 -0.000000000000 -0.000000000000 0.000000000000 3 -0.000000000000 0.000000000000 0.000632007295 4 -0.000000000000 -0.000000000000 0.000632007295 Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= -3.76811664E-10 sigma(3 2)= 0.00000000E+00 sigma(2 2)= -3.76811662E-10 sigma(3 1)= 0.00000000E+00 sigma(3 3)= 7.81471509E-10 sigma(2 1)= 0.00000000E+00 -Cartesian components of stress tensor (GPa) [Pressure= -2.7311E-07 GPa] - sigma(1 1)= -1.10861800E-05 sigma(3 2)= 0.00000000E+00 - sigma(2 2)= -1.10861800E-05 sigma(3 1)= 0.00000000E+00 - sigma(3 3)= 2.29916817E-05 sigma(2 1)= 0.00000000E+00 == END DATASET(S) ============================================================== ================================================================================ -outvars: echo values of variables after computation -------- acell1 7.5000000000E+00 7.5000000000E+00 1.2263388000E+01 Bohr acell2 7.5389647789E+00 7.5389647789E+00 1.2277795511E+01 Bohr amu 2.69815390E+01 7.49215900E+01 diemac 9.00000000E+00 dilatmx1 1.00000000E+00 dilatmx2 1.05000000E+00 ecut 6.00000000E+00 Hartree ecutsm 5.00000000E-01 Hartree etotal1 -2.0270828223E+01 etotal2 -2.0270943773E+01 fcart1 -0.0000000000E+00 -0.0000000000E+00 -1.0670440558E-08 -0.0000000000E+00 -0.0000000000E+00 -1.0670440558E-08 -0.0000000000E+00 -0.0000000000E+00 1.0670440558E-08 -0.0000000000E+00 -0.0000000000E+00 1.0670440558E-08 fcart2 -5.5378288695E-32 9.5918009655E-32 7.3055891075E-08 -5.5378288695E-32 9.5918009655E-32 7.3055891075E-08 2.5171949407E-32 -4.3599095298E-32 -7.3055891075E-08 8.5584627983E-32 -1.4823692401E-31 -7.3055891075E-08 - fftalg 312 getwfk1 0 getwfk2 -1 getxred1 0 getxred2 -1 iatfix 1 2 ionmov 2 jdtset 1 2 kpt 0.00000000E+00 0.00000000E+00 1.25000000E-01 2.50000000E-01 0.00000000E+00 1.25000000E-01 5.00000000E-01 0.00000000E+00 1.25000000E-01 2.50000000E-01 2.50000000E-01 1.25000000E-01 0.00000000E+00 0.00000000E+00 3.75000000E-01 2.50000000E-01 0.00000000E+00 3.75000000E-01 5.00000000E-01 0.00000000E+00 3.75000000E-01 2.50000000E-01 2.50000000E-01 3.75000000E-01 kptrlatt 4 0 0 0 4 0 0 0 4 P mkmem 8 natfix 2 natom 4 nband 8 ndtset 2 ngfft 18 18 30 nkpt 8 nstep 40 nsym 12 ntime1 5 ntime2 12 ntypat 2 occ 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 optcell1 0 optcell2 2 optforces 1 rprim 8.6602540378E-01 5.0000000000E-01 0.0000000000E+00 -8.6602540378E-01 5.0000000000E-01 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 1.0000000000E+00 shiftk 0.00000000E+00 0.00000000E+00 5.00000000E-01 spgroup 186 strten1 -3.5036406206E-05 -3.5036406206E-05 -1.9935924340E-05 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 strten2 -3.7681166390E-10 -3.7681166173E-10 7.8147150860E-10 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 symrel 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 1 1 0 -1 0 0 0 0 1 -1 0 0 1 1 0 0 0 1 0 1 0 -1 -1 0 0 0 1 -1 -1 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 1 0 -1 0 -1 0 0 0 0 1 -1 -1 0 1 0 0 0 0 1 1 0 0 -1 -1 0 0 0 1 0 -1 0 1 1 0 0 0 1 1 1 0 0 -1 0 0 0 1 tnons 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.5000000 -0.0000000 0.0000000 0.5000000 0.0000000 0.0000000 0.0000000 0.0000000 -0.0000000 0.0000000 0.0000000 0.0000000 0.5000000 0.0000000 0.0000000 0.5000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 -0.0000000 0.0000000 0.5000000 0.0000000 0.0000000 0.5000000 0.0000000 -0.0000000 0.0000000 tolmxf 1.00000000E-06 tolvrs 1.00000000E-18 typat 1 1 2 2 wtk 0.03125 0.18750 0.09375 0.18750 0.03125 0.18750 0.09375 0.18750 xangst1 -1.1457022644E+00 1.9844145322E+00 0.0000000000E+00 1.1457022644E+00 1.9844145322E+00 3.2447527148E+00 -1.1457022644E+00 1.9844145322E+00 2.4365099203E+00 1.1457022644E+00 1.9844145322E+00 5.6812626351E+00 xangst2 -1.1516545357E+00 1.9947241687E+00 0.0000000000E+00 1.1516545357E+00 1.9947241687E+00 3.2485647781E+00 -1.1516545357E+00 1.9947241687E+00 2.4434786613E+00 1.1516545357E+00 1.9947241687E+00 5.6920434394E+00 xcart1 -2.1650635095E+00 3.7500000000E+00 0.0000000000E+00 2.1650635095E+00 3.7500000000E+00 6.1316940000E+00 -2.1650635095E+00 3.7500000000E+00 4.6043364694E+00 2.1650635095E+00 3.7500000000E+00 1.0736030469E+01 xcart2 -2.1763116723E+00 3.7694823894E+00 0.0000000000E+00 2.1763116723E+00 3.7694823894E+00 6.1388977555E+00 -2.1763116723E+00 3.7694823894E+00 4.6175054814E+00 2.1763116723E+00 3.7694823894E+00 1.0756403237E+01 xred1 3.3333333333E-01 6.6666666667E-01 0.0000000000E+00 6.6666666667E-01 3.3333333333E-01 5.0000000000E-01 3.3333333333E-01 6.6666666667E-01 3.7545386882E-01 6.6666666667E-01 3.3333333333E-01 8.7545386882E-01 xred2 3.3333333333E-01 6.6666666667E-01 0.0000000000E+00 6.6666666667E-01 3.3333333333E-01 5.0000000000E-01 3.3333333333E-01 6.6666666667E-01 3.7608587611E-01 6.6666666667E-01 3.3333333333E-01 8.7608587611E-01 znucl 13.00000 33.00000 ================================================================================ - Timing analysis has been suppressed with timopt=0 ================================================================================ Suggested references for the acknowledgment of ABINIT usage. The users of ABINIT have little formal obligations with respect to the ABINIT group (those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt). However, it is common practice in the scientific literature, to acknowledge the efforts of people that have made the research possible. In this spirit, please find below suggested citations of work written by ABINIT developers, corresponding to implementations inside of ABINIT that you have used in the present run. Note also that it will be of great value to readers of publications presenting these results, to read papers enabling them to understand the theoretical formalism and details of the ABINIT implementation. For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments. - - [1] Recent developments in the ABINIT software package. - Computer Phys. Comm. 205, 106 (2016). - X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt, - C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval - D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro, - B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi, - Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux, - A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins, - M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese, - A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent, - M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor, - B.Xue, A.Zhou, J.W.Zwanziger. - Comment : the fourth generic paper describing the ABINIT project. - Note that a version of this paper, that is not formatted for Computer Phys. Comm. - is available at https://www.abinit.org/about/ABINIT16.pdf . - The licence allows the authors to put it on the Web. - - [2] ABINIT : First-principles approach of materials and nanosystem properties. - Computer Phys. Comm. 180, 2582-2615 (2009). - X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, - D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi - S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, - M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, - M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger - Comment : the third generic paper describing the ABINIT project. - Note that a version of this paper, that is not formatted for Computer Phys. Comm. - is available at https://www.abinit.org/about/ABINIT_CPC_v10.pdf . - The licence allows the authors to put it on the Web. - - [3] A brief introduction to the ABINIT software package. - Z. Kristallogr. 220, 558-562 (2005). - X. Gonze, G.-M. Rignanese, M. Verstraete, J.-M. Beuken, Y. Pouillon, R. Caracas, F. Jollet, - M. Torrent, G. Zerah, M. Mikami, Ph. Ghosez, M. Veithen, J.-Y. Raty, V. Olevano, F. Bruneval, - L. Reining, R. Godby, G. Onida, D.R. Hamann, and D.C. Allan. - Comment : the second generic paper describing the ABINIT project. Note that this paper - should be cited especially if you are using the GW part of ABINIT, as several authors - of this part are not in the list of authors of the first or third paper. - The .pdf of the latter paper is available at https://www.abinit.org/about/zfk_0505-06_558-562.pdf. - Note that it should not redistributed (Copyright by Oldenburg Wissenshaftverlag, - the licence allows the authors to put it on the Web). - - And optionally: - - [4] First-principles computation of material properties : the ABINIT software project. - X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, - M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty, D.C. Allan. - Computational Materials Science 25, 478-492 (2002). http://dx.doi.org/10.1016/S0927-0256(02)00325-7 - Comment : the original paper describing the ABINIT project. - - Proc. 0 individual time (sec): cpu= 26.9 wall= 27.5 ================================================================================ Calculation completed. .Delivered 7 WARNINGs and 0 COMMENTs to log file. +Overall time at end (sec) : cpu= 26.9 wall= 27.5
The first thing to look for is to see whether Abinit recognized the symmetry of the system. In setting up a new data file, it’s easy to make mistakes, so this is a valuable check. We see
DATASET 1 : space group P6_3 m c (#186); Bravais hP (primitive hexag.)
which is correct. Next, we confirm that the structural optimization converged. The following lines from dataset 1 and dataset2 tell us that things are OK:
At Broyd/MD step 4, gradients are converged : max grad (force/stress) = 1.0670E-08 < tolmxf= 1.0000E-06 ha/bohr (free atoms) At Broyd/MD step 11, gradients are converged : max grad (force/stress) = 7.8147E-08 < tolmxf= 1.0000E-06 ha/bohr (free atoms)
We can also confirm that the stresses are relaxed:
Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= -3.76811543E-10 sigma(3 2)= 0.00000000E+00 sigma(2 2)= -3.76811542E-10 sigma(3 1)= 0.00000000E+00 sigma(3 3)= 7.81471561E-10 sigma(2 1)= 0.00000000E+00
Now would be a good time to copy telast_2.in and telast_2.files into your working directory, since we will use the present output to start the next run. Locate the optimized lattice parameters and reduced atomic coordinates near the end of telast_1.out:
acell2 7.5389647789E+00 7.5389647789E+00 1.2277795511E+01 Bohr xred2 3.3333333333E-01 6.6666666667E-01 0.0000000000E+00 6.6666666667E-01 3.3333333333E-01 5.0000000000E-01 3.3333333333E-01 6.6666666667E-01 3.7608587611E-01 6.6666666667E-01 3.3333333333E-01 8.7608587611E-01
With your editor, copy and paste these into telast_2.in at the indicated places in the “Common input data” area. Be sure to change acell2 and xred2 to acell and xred since these common values will apply to all datasets in the next set of calculations.
2 Response-function calculations of several second derivatives of the total energy¶
We will now compute second derivatives of the total energy (2DTE’s) with respect to all the perturbations we need to compute elastic and piezoelectric properties. You may want to review the first paragraphs of the respfn help file which you studied in tutorial RF1. We will introduce only one new input variable for the strain perturbation,
The treatment of strain as a perturbation has some subtle aspects. It would be a good idea to read Metric tensor formulation of strain in density-functional perturbation theory, by D. R. Hamann, Xifan Wu, Karin M. Rabe, and David Vanderbilt [Hamann2005] especially Sec. II and Sec. IV. We will do all the RF calculations you learned in tutorial RF1 together with strain, so you should review the variables
It would be a good idea to copy telast_2.files into Work_elast and start the calculation while you read (less than 2 minutes on a standard 3GHz machine). Look at telast_2.in in your editor to follow the discussion, and double check that you have copied acell and xred as discussed in the last section.
#AlAs in hypothetical wurzite (hexagonal) structure #Response function calculation for: # * rigid-atom elastic tensor # * rigid-atom piezoelectric tensor # * interatomic force constants at gamma # * Born effective charges ndtset 3 # Set 1 : Initial self-consistent run kptopt1 1 tolvrs1 1.0d-18 #need excellent convergence of GS quantities for RF runs # Set 2 : Calculate the ddk wf's - needed for piezoelectric tensor and # Born effective charges in dataset 3 getwfk2 -1 iscf2 -3 #this option is needed for ddk kptopt2 2 #use time-reversal symmetry only for k points nqpt2 1 #one wave vector will be specified qpt2 0 0 0 #need to specify gamma point rfelfd2 2 #set for ddk wf's only rfdir2 1 1 1 #full set of directions needed tolwfr2 1.0d-20 #only wf convergence can be monitored here # Set 3 : response-function calculations for all needed perturbations getddk3 -1 getwfk3 -2 kptopt3 2 #use time-reversal symmetry only for k points nqpt3 1 qpt3 0 0 0 rfphon3 1 #do atomic displacement perturbation rfatpol3 1 4 #do for all atoms rfstrs3 3 #do strain perturbation rfdir3 1 1 1 #the full set of directions is needed tolvrs3 1.0d-10 #need reasonable convergence of 1st-order quantities #Common input data # acell COPY RELAXED RESULT FROM PREVIOUS CALCULATION # Here is a default value, for automatic testing : suppress it and fill the previous line acell 7.5389648144E+00 7.5389648144E+00 1.2277795374E+01 rprim sqrt(0.75) 0.5 0.0 #hexagonal primitive vectors must be -sqrt(0.75) 0.5 0.0 #specified with high accuracy to be 0.0 0.0 1.0 #sure that the symmetry is recognized #and preserved in the optimization #process #Definition of the atom types and atoms ntypat 2 znucl 13 33 natom 4 typat 1 1 2 2 #Starting approximation for atomic positions in REDUCED coordinates #based on ideal tetrahedral bond angles # xred COPY RELAXED RESULT FROM PREVIOUS CALCULATION # Here is a set of default values, for automatic testing : suppress it and fill the previous line xred 1/3 2/3 0 2/3 1/3 1/2 1/3 2/3 3.7608588373E-01 2/3 1/3 8.7608588373E-01 #Gives the number of bands, explicitely (do not take the default) nband 8 # For an insulator (if described correctly as an # insulator by DFT), conduction bands should not # be included in response-function calculations #Definition of the plane wave basis set ecut 6.0 # Maximum kinetic energy cutoff (Hartree) ecutsm 0.5 # Smoothing energy needed for lattice paramete # optimization. This will be retained for # consistency throughout. #Definition of the k-point grid kptopt 1 # Use symmetry and treat only inequivalent points ngkpt 4 4 4 # 4x4x4 Monkhorst-Pack grid nshiftk 1 # Use one copy of grid only (default) shiftk 0.0 0.0 0.5 # This choice of origin for the k point grid # preserves the hexagonal symmetry of the grid, # which would be broken by the default choice. #Definition of the self-consistency procedure diemac 9.0 # Model dielectric preconditioner nstep 40 # Maxiumum number of SCF iterations # enforce calculation of forces at each SCF step optforces 1 ## After modifying the following section, one might need to regenerate the pickle database with runtests.py -r #%%<BEGIN TEST_INFO> #%% [setup] #%% executable = abinit #%% test_chain = telast_2.in, telast_3.in #%% [files] #%% files_to_test = #%% telast_2.out, tolnlines= 0, tolabs= 0.000e+00, tolrel= 0.000e+00, fld_options = -easy #%% psp_files = 13al.pspnc, 33as.pspnc #%% [paral_info] #%% max_nprocs = 2 #%% [extra_info] #%% authors = D. Hamann #%% keywords = NC, DFPT #%% description = #%% AlAs in hypothetical wurzite (hexagonal) structure #%% Response function calculation for: #%% * rigid-atom elastic tensor #%% * rigid-atom piezoelectric tensor #%% * interatomic force constants at gamma #%% * Born effective charges #%%<END TEST_INFO>
This has been set up as a self-contained calculation with three datasets. The first is simply a GS run to obtain the GS wave functions we will need for the DFPT calculations. We have removed the convergence test from the common input data to remind ourselves that different tests are needed for different datasets. We set a tight limit on the convergence of the self-consistent potential with tolvrs. Since we have specified nband=8, all the bands are occupied and the potential test also assures us that all the wave functions are well converged. This issue will come up again in the section on metals. We could have used the output wave functions telast_1o_DS2_WFK as input for our RF calculations and skipped dataset 1, but redoing the GS calculation takes relatively little time for this simple system.
Dataset 2 involves the calculation of the derivatives of the wave functions with respect to the Brillouin-zone wave vector, the so-called ddk wave functions. Recall that these are auxiliary quantities needed to compute the response to the electric field perturbation and introduced in tutorial RF1. It would be a good idea to review the relevant parts of section 1 of the respfn_help file.
Examining this section of telast_2.in, note that electric field as well as strain are uniform perturbations, only are defined for qpt = 0 0 0. rfelfd = 2 specifies that we want the ddk calculation to be performed, which requires iscf = -3. The ddk wave functions will be used to calculate both the piezoelectric tensor and the Born effective charges, and in general we need them for k derivatives in all three (reduced) directions, rfdir = 1 1 1. Since there is no potential self-consistency in the ddk calculations, we must specify convergence in terms of the wave function residuals using tolwfr.
Finally, dataset 3 performs the actual calculations of the needed 2DTE’s for the elastic and piezoelectric tensors. Setting rfphon = 1 turns on the atomic displacement perturbation, which we need for all atoms (rfatpol = 1 4) and all directions (rfdir = 1 1 1). Abinit will calculate first-order wave functions for each atom and direction in turn, and use those to calculate 2DTE’s with respect to all pairs of atomic displacements and with respect to one atomic displacement and one component of electric field. These quantities, the interatomic force constants (at \Gamma) and the Born effective charges will be used later to compute the atomic relaxation contribution to the elastic and piezoelectric tensor.
First-order wave functions for the strain perturbation are computed next. Setting rfstrs = 3 specifies that we want both uniaxial and shear strains to be treated, and rfdir = 1 1 1 cycles through strains xx, yy, and zz for uniaxial and yz, xz, and xy for shear. We note that while other perturbations in Abinit are treated in reduced coordinates, strain is better dealt with in Cartesian coordinates for reasons discussed in the reference cited above. These wave functions are used to compute three types of 2DTE’s. Derivatives with respect to two strain components give us the so-called rigid-ion elastic tensor. Derivatives with respect to one strain and one electric field component give us the rigid-ion piezoelectric tensor. Finally, derivatives with respect to one strain and one atomic displacement yield the internal- strain force-response tensor, an intermediate quantity that will be necessary to compute the atomic relaxation corrections to the rigid-ion quantities. As in tutorial DFPT1, we specify convergence in terms of the residual of the potential (here the first-order potential) using tolvrs.
Your run should have completed by now. Abinit should have created quite a few files.
- telast_2.log (log file)
- telast_2.out (main output file)
- telast_2o_DS1_DDB (first derivatives of the energy from GS calculation)
- telast_2o_DS3_DDB (second derivatives from the RF calculation)
- telast_2o_DS1_WFK (GS wave functions)
- telast_2o_DS2_1WF* (ddk wave functions)
- telast_2o_DS3_1WF* (RF first-order wave functions from various perturbations)
The log and out files are diagnostics and readable output information for a wide variety of properties. The derivative database DDB files are ascii and readable, but primarily for subsequent analysis by anaddb which we will undertake in the next section. Finally, the various wave function binary files are primarily of use for subsequent calculations, where they could cut the number of needed iterations in, for example, convergence testing. We take note of a few conventions in the file names. The root output file name telast_2o is from the 4th line of the “files” file. The dataset producing the file is next. Finally, the first-order wave function 1WF files have a final “pertcase” number described in section 1 of the respfn_help file. While telast_2.in specifies all atomic displacements, only the symmetry- inequivalent perturbations are treated, so the “pertcase” list is incomplete. All cases specified in the input data are treated for the strain perturbation.
First, take a look at the end of the telast_2.log *file to make sure the run has completed without error. You might wish to take a look at the WARNING’s, but they all appear to be harmless. Next, edit your *telast_2.out file. Searching backwards for ETOT you will find
iter 2DEtotal(Ha) deltaE(Ha) residm vres2 -ETOT 1 2.3955208361366 -6.519E+00 6.313E-01 4.126E+02 ETOT 2 1.3040286462220 -1.091E+00 4.926E-04 4.735E+00 ETOT 3 1.2898966738702 -1.413E-02 1.857E-05 3.504E-01 ETOT 4 1.2891923712805 -7.043E-04 2.937E-07 8.931E-03 ETOT 5 1.2891781500347 -1.422E-05 7.582E-09 5.989E-05 ETOT 6 1.2891780804502 -6.958E-08 4.440E-11 7.674E-07 ETOT 7 1.2891780792714 -1.179E-09 1.236E-12 2.972E-08 ETOT 8 1.2891780791847 -8.667E-11 2.674E-14 7.671E-10 ETOT 9 1.2891780791827 -2.006E-12 9.086E-16 4.128E-12 At SCF step 9 vres2 = 4.13E-12 < tolvrs= 1.00E-10 =>converged.
Abinit is solving a set of Schroedinger-like equations for the first-order wave functions, and these functions minimize a variational expression for the 2DTE (Technically, they are called self-consistent Sternheimer equations) The energy convergence looks similar to that of GS calculations. The fact that vres2, the residual of the self-consistent first-order potential, has reached tolvrs well within nstep (40) iterations indicates that the 2DTE calculation for this perturbation (xy strain) has converged. It would pay to examine a few more cases for different perturbations (unless you have looked through all the warnings in the log).
Another convergence item to examine in your .out file is
Seventeen components of 2nd-order total energy (hartree) are 1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions kin0= 9.10477366E+00 eigvalue= 3.11026184E-01 local= -3.66858410E+00 4,5,6,7: 1st-order hamiltonian combined with 1st and 0th-order wfs loc psp = -8.91644855E+00 Hartree= 4.33575581E+00 xc= -6.58530138E-01 kin1= -8.62111363E+00 8,9,10: eventually, occupation + non-local contributions edocc= 0.00000000E+00 enl0= 6.43290228E-01 enl1= -1.55388963E-01 1-10 gives the relaxation energy (to be shifted if some occ is /=2.0) erelax= -7.62521951E+00 11,12,13 Non-relaxation contributions : frozen-wavefunctions and Ewald fr.hart= -1.18530360E-01 fr.kin= 5.20015318E+00 fr.loc= 4.18792202E-01 14,15,16 Non-relaxation contributions : frozen-wavefunctions and Ewald fr.nonl= 2.94970622E-01 fr.xc= 9.41457939E-02 Ewald= 3.02486615E+00 17 Non-relaxation contributions : pseudopotential core energy pspcore= 0.00000000E+00 Resulting in : 2DEtotal= 0.1289178079E+01 Ha. Also 2DEtotal= 0.350803195765E+02 eV (2DErelax= -7.6252195073E+00 Ha. 2DEnonrelax= 8.9143975865E+00 Ha) ( non-var. 2DEtotal : 1.2891781360E+00 Ha)
This detailed breakdown of the contributions to 2DTE is probably of limited
interest, but you should compare “2DEtotal” and “non-var. 2DEtotal” from the
last three lines. While the first-order wave function for the present
perturbation minimizes a variational expression for the second derivative
with respect to this perturbation as we just saw, the various 2DTE given as
elastic tensors, etc. in the output and in the DDB file are all computed using
non-variational expressions. Using the non-variational expressions, mixed
second derivatives with respect to the present perturbation and all other
perturbations of interest can be computed directly from the present first-
order wave functions. The disadvantage is that the non-variational result
has errors which are linearly proportional to convergence errors in the GS and
first-order wave functions. Since errors in the variational 2DEtotal are
second-order in wave-function convergence errors, comparing this to the non-variational
result for the diagonal second derivative will give an idea of the
accuracy of the latter and perhaps indicate the need for tighter convergence
tolerances for both the GS and RF wave functions.
This is discussed in X. Gonze and C. Lee, Phys. Rev. B 55, 10355 (1997) [Gonze1997a], Sec. II.
For an atomic-displacement perturbation, the corresponding breakdown of the 2DTE is headed
“Thirteen components.”
Now let us take a look at the results we want, the various 2DTE’s. They begin
==> Compute Derivative Database <== 2nd-order matrix (non-cartesian coordinates, masses not included, asr not included ) cartesian coordinates for strain terms (1/ucvol factor for elastic tensor components not included) j1 j2 matrix element dir pert dir pert real part imaginary part 1 1 1 1 5.4508668454 0.0000000000 1 1 2 1 -2.7254334227 0.0000000000 1 1 3 1 0.0000000000 0.0000000000 .....
These are the “raw” 2DTE’s, in reduced coordinates for atom-displacement and electric-field perturbations, but Cartesian coordinates for strain perturbations. This same results with the same organization appear in the file telast_2_DS3_DDB which will be used later as input for automated analysis and converted to more useful notation and units by anaddb. A breakout of various types of 2DTE’s follows (all converted to Cartesian coordinates and in atomic units):
Dynamical matrix, in cartesian coordinates, if specified in the inputs, asr has been imposed j1 j2 matrix element dir pert dir pert real part imaginary part 1 1 1 1 0.0959051967 0.0000000000 1 1 2 1 0.0000000000 0.0000000000 1 1 3 1 0.0000000000 0.0000000000 .....
This contains the interatomic force constant data that will be used later to include atomic relaxation effects. “asr” refers to the acoustic sum rule, which basically is a way of making sure that forces sum to zero when an atom is displaced.
Effective charges, in cartesian coordinates, (from phonon response) if specified in the inputs, asr has been imposed j1 j2 matrix element dir pert dir pert real part imaginary part 1 6 1 1 1.8290469443 0.0000000000 2 6 1 1 0.0000000000 0.0000000000 3 6 1 1 0.0000000000 0.0000000000 .....
The Born effective charges will be used to find the atomic relaxation contributions of the piezoelectric tensor.
Rigid-atom elastic tensor , in cartesian coordinates, j1 j2 matrix element dir pert dir pert real part imaginary part 1 7 1 7 0.0056418385 0.0000000000 1 7 2 7 0.0013753710 0.0000000000 1 7 3 7 0.0007168444 0.0000000000 .....
The rigid-atom elastic tensor is the 2DTE with respect to a pair of strains. We recall that “pert” = natom+3 and natom+4 for unaxial and shear strains, respectively.
Internal strain coupling parameters, in cartesian coordinates, zero average net force deriv. has been imposed j1 j2 matrix element dir pert dir pert real part imaginary part 1 1 1 7 0.1249319229 0.0000000000 1 1 2 7 -0.1249319273 0.0000000000 1 1 3 7 0.0000000000 0.0000000000 .....
These 2DTE’s with respect to one strain and one atomic displacement are needed for atomic relaxation corrections to both the elastic tensor and piezoelectric tensor. While this set of parameters is of limited direct interest, it should be examined in cases when you think that high symmetry may eliminate the need for these corrections. You are probably wrong, and any non-zero term indicates a correction.
Rigid-atom proper piezoelectric tensor, in cartesian coordinates, j1 j2 matrix element dir pert dir pert real part imaginary part 1 1 1 7 0.1249319273 0.0000000000 1 1 2 7 -0.1249319211 0.0000000000 1 1 3 7 0.0000000000 0.0000000000
Finally, we have the piezoelectric tensor, the 2DTE with respect to one strain and one uniform electric field component. (Yes, there are non-zero elements.)
3 ANADDB calculation of atom-relaxation effects¶
In this section, we will run the program anaddb, which analyzes DDB files generated in prior RF calculations. You should copy telast_3.in and telast_3.files in your Work_elast directory. You should now go to the anaddb help file introduction. The bulk of the material in this help file is contained in the description of the variables. You should read the descriptions of
For the theory underlying the incorporation of atom-relaxation corrections, it is recommended you see X. Wu, D. Vanderbilt, and D. R. Hamann [Wu2005].
Anaddb can do lots of other things, such as calculate the frequency-dependent dielectric tensor, interpolate the phonon spectrum to make nice phonon dispersion plots, calculate Raman spectra, etc., but we are focusing on the minimum needed for the elastic and piezoelectric constants at zero electric field.
We also mention that mrgddb is another utility program that can be used to combine DDB files generated in several different datasets or in different runs into a single DDB file that can be analyzed by anaddb. One particular usage would be to combine the DDB file produced by the GS run, which contains first-derivative information such as stresses and forces with the RF DDB. It is anticipated that anaddb in a future release will implement the finite-stress corrections to the elastic tensor discussed in notes by A. R. Oganov .
Now would be a good time to edit telast_3.in and observe that it is very simple, consisting of nothing more than the four variables listed above set to appropriate values.
telast_3.in telast_3.out telast_2o_DS3_DDB dummy_moldyn dummy_GKK dummy_epout dummy_ddk
!the input file for the anaddb code elaflag 3 !the flag for the elastic constant piezoflag 3 !the flag for the piezoelectric constant instrflag 1 !the flag for the internal strain tensor !the effective charge part chneut 1 !enforce Born effective charge neutrality ## After modifying the following section, one might need to regenerate the pickle database with runtests.py -r #%%<BEGIN TEST_INFO> #%% [setup] #%% executable = anaddb #%% test_chain = telast_2.in, telast_3.in #%% input_ddb = telast_2o_DS3_DDB #%% [files] #%% files_to_test = #%% telast_3.out, tolnlines= 0, tolabs= 0.000e+00, tolrel= 0.000e+00, fld_options = -easy #%% psp_files = 13al.pspnc, 33as.pspnc #%% [paral_info] #%% max_nprocs = 4 #%% [extra_info] #%% authors = D. Hamann #%% keywords = NC, DFPT #%% description = The input file for the anaddb code #%%<END TEST_INFO>
The telast_3.files file is used with anaddb in the same manner as the abinit .files you are by now used to. The first two lines specify the .in and .out files, the third line specifies the DDB file, and the last two lines are dummy names which would be used in connection with other capabilities of anaddb. Now you should run the calculation, which is done in the same way as you are now used to for abinit:
anaddb <telast_3.files >&telast_3.log
This calculation should only take a few seconds. You should edit the log file, go to the end, and make sure the calculation terminated without error. Next, examine telast_3.out. After some header information, we come to tables giving the “force-response” and “displacement-response” internal strain tensors. These represent, respectively, the force on each atom and the displacement of each atom in response to a unit strain of the specified type. These numbers are of limited interest to us, but represent important intermediate quantities in the treatment of atomic relaxation (see the X. Wu [Wu2005] paper cited above).
Next, we come to the elastic tensor output:
Elastic Tensor(clamped ion)(unit:10^2GP): 1.6598859 0.4046480 0.2109029 0.0000000 0.0000000 0.0000000 0.4046480 1.6598859 0.2109029 0.0000000 -0.0000000 0.0000000 0.2109030 0.2109030 1.8258575 0.0000000 -0.0000000 0.0000000 -0.0000000 -0.0000000 -0.0000000 0.4081820 -0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 -0.0000000 0.4081820 -0.0000000 -0.0000000 -0.0000000 -0.0000000 0.0000000 -0.0000000 0.6276190 Elastic Tensor(relaxed ion)(unit:10^2GP): (at fixed electric field boundary condition) 1.3526217 0.5445039 0.3805291 -0.0000000 0.0000000 0.0000000 0.5445039 1.3526217 0.3805292 0.0000000 -0.0000000 0.0000000 0.3805292 0.3805293 1.4821104 0.0000000 -0.0000000 0.0000000 -0.0000000 0.0000000 0.0000000 0.3055071 -0.0000000 0.0000000 0.0000000 -0.0000000 -0.0000000 -0.0000000 0.3055071 0.0000000 -0.0000000 0.0000000 -0.0000000 0.0000000 0.0000000 0.4040588
While not labeled, the rows and columns 1-6 here represent xx, yy, zz, yz, xz,
xy strains and stresses in the conventional Voigt notation.
The clamped-ion results were calculated in the telast_2 RF run, and are simply
converted to standard GPa units by anaddb (the terms “clamped ion,” “clamped
atom,” and “rigid atom” used in various places are interchangeable, similarly for “relaxed.”)
The relaxed-ion result was calculated by anaddb by combining 2DTE’s for
internal strain and interatomic force constants which are stored in the input
DDB file. Comparing the clamped and relaxed results, we see that all the
diagonal elastic constants have decreased in value.
This is plausible, since allowing the internal degrees of freedom to relax
should make a material less stiff. These tensors should be symmetric, and
certain tensor elements should be zero or identical by symmetry.
It’s a good idea to check these properties against a standard text such as J.
F. Nye, Physical Properties of Crystals (Oxford U. P., Oxford 1985) [Nye1985].
Departures from expected symmetries (there are a few in the last decimal place
here) are due to either convergence errors or, if large, incorrectly specified
geometry (however, see the final comments on symmetry below).
Next in telast_3.out we find the piezoelectric tensor results:
Proper piezoelectric constants(clamped ion)(unit:c/m^2) 0.00000000 0.00000000 0.38490079 0.00000000 0.00000000 0.38490075 0.00000000 0.00000000 -0.73943025 0.00000000 0.43548797 0.00000000 0.43548796 0.00000000 -0.00000000< 0.00000000 0.00000000 0.00000001 Proper piezoelectric constants(relaxed ion)(unit:c/m^2) 0.00000000 -0.00000000 -0.01187149 -0.00000000 0.00000000 -0.01187169 -0.00000000 0.00000000 0.06462779 -0.00000000 -0.04828847 -0.00000000 -0.04828832 -0.00000000 0.00000000
The 3 columns here represent x, y, and z electric polarization, and the 6 rows the Voigt strains. The clamped-ion result was calculated in the telast_2 RF run, and is simply scaled to conventional units by anaddb. The ion relaxation contributions are based on 2DTE’s for internal strain, interatomic force constants, and Born effective charges, and typically constitute much larger corrections to the piezoelectric tensor than to the elastic tensor. Once again, symmetries should be checked (The slight discrepancies seen here can be removed by setting tolvrs3 = 1.0d-18 in telast_2.in). One should be aware that the piezoelectric tensor is identically zero in any material which has a center of symmetry.
Since we are dealing with a hypothetical material, there is no experimental data with which to compare our results. In the next section, we will calculate a few of these numbers by a finite-difference method to gain confidence in the RF approach.
4 Finite-difference calculation of elastic and piezoelectric constants¶
You should copy telast_4.in and telast_4.files into your Work_elast directory.
#AlAs in hypothetical wurzite (hexagonal) structure #Finite-difference calculation for c-axis strain increment +/- 0.0001 ndtset 4 # Set 1 : Self-consistent run for stress kptopt1 1 rprim1 0.866025403784439 0.5 0.0 -0.866025403784439 0.5 0.0 0.0 0.0 0.9999 #strained value # Set 2 : Run for electric polarization berryopt2 -1 #preferred method to calulate electric polarization getwfk2 -1 #previous wf's will be transformed to full k set as needed kptopt2 3 #berry phase calculation requires full k set rprim2 0.866025403784439 0.5 0.0 -0.866025403784439 0.5 0.0 0.0 0.0 0.9999 rfdir2 1 1 1 #will calculate Cartesian polarization # Set 3 : Self-consistent run for stress getwfk3 -1 #wave function shouldn't change much kptopt3 1 rprim3 0.866025403784439 0.5 0.0 -0.866025403784439 0.5 0.0 0.0 0.0 1.0001 #strained value # Set 4 : Run for electric polarization berryopt4 -1 getwfk4 -1 kptopt4 3 rprim4 0.866025403784439 0.5 0.0 -0.866025403784439 0.5 0.0 0.0 0.0 1.0001 rfdir4 1 1 1 #Common input data #Starting approximation for the unit cell # relaxed lattice constants acell 7.5389648144E+00 7.5389648144E+00 1.2277795374E+01 #Definition of the atom types and atoms ntypat 2 znucl 13 33 natom 4 typat 1 1 2 2 #Starting approximation for atomic positions in REDUCED coordinates #based on ideal tetrahedral bond angles # relaxed atomic coordinates xred 3.3333333333E-01 6.6666666667E-01 0.0000000000E+00 6.6666666667E-01 3.3333333333E-01 5.0000000000E-01 3.3333333333E-01 6.6666666667E-01 3.7608588373E-01 6.6666666667E-01 3.3333333333E-01 8.7608588373E-01 #Gives the number of bands, explicitely (do not take the default) nband 8 # For an insulator (if described correctly as an # insulator by DFT), conduction bands should not # be included in response-function calculations #Definition of the plane wave basis set ecut 6.0 # Maximum kinetic energy cutoff (Hartree) ecutsm 0.5 # Smoothing energy needed for lattice paramete # optimization. This will be retained for # consistency throughout. #Definition of the k-point grid kptopt 1 # Use symmetry and treat only inequivalent points ngkpt 4 4 4 # 4x4x4 Monkhorst-Pack grid nshiftk 1 # Use one copy of grid only (default) shiftk 0.0 0.0 0.5 # This choice of origin for the k point grid # preserves the hexagonal symmetry of the grid, # which would be broken by the default choice. #Definition of the self-consistency procedure diemac 9.0 # Model dielectric preconditioner nstep 40 # Maxiumum number of SCF iterations tolvrs 1.0d-18 # Needed for good stress and polarization convergence # enforce calculation of forces at each SCF step optforces 1 ## After modifying the following section, one might need to regenerate the pickle database with runtests.py -r #%%<BEGIN TEST_INFO> #%% [setup] #%% executable = abinit #%% [files] #%% files_to_test = #%% telast_4.out, tolnlines= 0, tolabs= 0.000e+00, tolrel= 0.000e+00 #%% psp_files = 13al.pspnc, 33as.pspnc #%% [paral_info] #%% max_nprocs = 2 #%% [extra_info] #%% authors = D. Hamann #%% keywords = NC, DFPT #%% description = #%% AlAs in hypothetical wurzite (hexagonal) structure #%% Finite-difference calculation for c-axis strain increment +/- 0.0001 #%%<END TEST_INFO>
Editing telast_4.in, you will see that it has four datasets, the first two with the c-axis contracted 0.01% and the second two with it expanded 0.01%, which we specified by changing the third row of rprim. The common data is essentially the same as telast_2.in, and the relaxed acell values and xred from telast_1.out have already been included. Datasets 1 and 3 do the self-consistent convergence of the GS wave functions for the strained lattices and compute the stress. Datasets 2 and 4 introduce a new variable.
Electric polarization in solids is a subtle topic which has only recently been rigorously resolved. It is now understood to be a bulk property, and to be quantitatively described by a Berry phase formulation introduced by R. D. King-Smith and D. Vanderbilt, Phys. Ref. B 47, 1651(1993) [Kingsmith1993]. It can be calculated in a GS calculation by integrating the gradient with respect to k of the GS wave functions over the Brillouin zone. In GS calculations, the gradients are approximated by finite-difference expressions constructed from neighboring points in the k mesh. These are closely related to the ddk wave functions used in RF calculations in section 2 and introduced in tutorial DFPT1, section 5. We will use berryopt = -1, which utilizes an improved coding of the calculation, and must specify rfdir = 1 1 1 so that the Cartesian components of the polarization are computed.
Now, run the telast_4.in calculation, which should only take a minute or two, and edit telast_4.out. To calculate the elastic constants, we need to find the stresses sigma(1 1) and sigma(3 3). We see that each of the four datasets have stress results, but that there are slight differences between those from, for example dataset 1 and dataset 2, which should be identical. Despite our tight limit, this is still a convergence issue. Look at the following convergence results,
Dataset 1: At SCF step 13 vres2 = 6.24E-21 < tolvrs= 1.00E-18 =>converged. Dataset 2: At SCF step 1 vres2 = 5.08E-21 < tolvrs= 1.00E-18 =>converged.
Since dataset 2 has better convergence, we will use this and the dataset 4 results, choosing those in GPa units,
- sigma(1 1)= -2.11918835E-03 sigma(3 2)= 0.00000000E+00 - sigma(3 3)= -1.82392050E-02 sigma(2 1)= 0.00000000E+00 - sigma(1 1)= 2.09886408E-03 sigma(3 2)= 0.00000000E+00 - sigma(3 3)= 1.82778679E-02 sigma(2 1)= 0.00000000E+00
Let us now compute the numerical derivative of sigma(3 3) and compare to our RF result. Recalling that our dimensionless strains were ±0.0001, we find 182.5853 GPa. This compares very well with the value 182.58575 GPa, the 3,3 element of the Rigid-ion elastic tensor we found from our anaddb calculation in section 3. (Recall that our strains and stresses were both 3,3 or z,z or Voigt 3.) Similarly, the numerical derivative of sigma(1 1) is 21.09026 GPa, compared to 21.09029 GPa, the 3,1 elastic-tensor element.
The good agreement we found from this simple numerical differentiation required that we had accurately relaxed the lattice so that the stress of the unstrained structure was very small. Similar numerical-derivative comparisons for systems with finite stress are more complicated, as discussed in notes by A. R. Oganov. Numerical- derivative comparisons for the relaxed-ion results are extremely challenging since they require relaxing atomic forces to exceedingly small limits.
Now let us examine the electric polarizations found in datasets 2 and 4, focusing on the C/m^2 results,
Polarization -1.578272218E-11 C/m^2 Polarization 1.578207434E-11 C/m^2 Polarization -2.979936062E-01 C/m^2 Polarization -1.577757536E-11 C/m^2 Polarization 1.577753205E-11 C/m^2 Polarization -2.981427239E-01 C/m^2
While not labeled as such, these are the Cartesian x, y, and z components, respectively, and the x and y components are zero within numerical accuracy as they must be from symmetry. Numerical differentiation of the z component yields -0.745589 C/m^2. This is to be compared with the z,3 element of our rigid-ion piezoelectric tensor from section 3, -0.73943025 C/m^2, and the two results do not compare as well as we might wish.
What is wrong? There are two possibilities. The first is that the RF calculation produces the proper piezoelectric tensor, while numerical differentiation of the polarization produces the improper piezoelectric tensor. This is a subtle point, for which you are referred to D. Vanderbilt, J. Phys. Chem. Solids 61, 147 (2000) [Vanderbilt2000]. The improper-to-proper transformation only effects certain tensor elements, however, and for our particular combination of crystal symmetry and choice of strain there is no correction. The second possibility is the subject of the next section.
5 Alternative DFPT calculation of some piezoelectric constants¶
Our GS calculation of the polarization in section 4 used, in effect, a finite- difference approximation to ddk wave functions, while our RF calculations in section 2 used analytic results based on the RF approach. Since the k grid determined by ngkpt = 4 4 4 and nshiftk = 1 is rather coarse, this is a probable source of discrepancy. Since this issue was noted previously in connection with the calculation of Born effective charges by Na Sai, K. M. Rabe, and D. Vanderbilt, Phys. Rev. B 66, 104108 (2002) [Sai2002], Abinit has incorporated the ability to use finite-difference ddk wave functions from GS calculations in RF calculations of electric-field-related 2DTE’s. Copy telast_5.in and telast_5.files into Work_elast, and edit telast_5.in.
#AlAs in hypothetical wurzite (hexagonal) structure #Alternative response function calculation for some rigid-atom #piezoelectric tensor elements. ndtset 3 # Set 1 : Initial self-consistent run kptopt1 1 prtden1 1 #second dataset need density tolvrs1 1.0d-18 #need excellent convergence of GS quantities for RF runs #Second dataset : finite-difference d/dk ground-state calculation # uses bdberry_new berryopt2 -2 #specifies ddk wave functions wanted getden2 -1 #use density from previous dataset getwfk2 -1 #use wave function from profious dataset kptopt2 3 #need full set of k points herre iscf2 -2 #non-self-consistent rfdir2 0 0 1 #we are only checking a c-axis quantity tolwfr2 1.0d-20 # only wave function convergence can be used with # non-self-consistent calculation # Set 3 : response-function calculations for all needed perturbations getddk3 -1 getwfk3 -1 kptopt3 2 #use time-reversal symmetry only for k points nqpt3 1 qpt3 0 0 0 rfstrs3 1 #do strain perturbation rfdir3 0 0 1 #the full set of directions is needed tolvrs3 1.0d-10 #need reasonable convergence of 1st-order quantities #Common input data #Lattice (relaxed lattice constants) acell 7.5389648144E+00 7.5389648144E+00 1.2277795374E+01 rprim 0.866025403784439 0.5 0.0 #hexagonal primitive vectors must be -0.866025403784439 0.5 0.0 #specified with high accuracy to be 0.0 0.0 1.0 #sure that the symmetry is recognized #and preserved in the optimization #process #Definition of the atom types and atoms ntypat 2 znucl 13 33 natom 4 typat 1 1 2 2 #Starting approximation for atomic positions in REDUCED coordinates #based on ideal tetrahedral bond angles #Atomic positions (relaxed) xred 3.3333333333E-01 6.6666666667E-01 0.0000000000E+00 6.6666666667E-01 3.3333333333E-01 5.0000000000E-01 3.3333333333E-01 6.6666666667E-01 3.7608588373E-01 6.6666666667E-01 3.3333333333E-01 8.7608588373E-01 #Gives the number of bands, explicitely (do not take the default) nband 8 # For an insulator (if described correctly as an # insulator by DFT), conduction bands should not # be included in response-function calculations #Definition of the plane wave basis set ecut 6.0 # Maximum kinetic energy cutoff (Hartree) ecutsm 0.5 # Smoothing energy needed for lattice paramete # optimization. This will be retained for # consistency throughout. #Definition of the k-point grid kptopt 1 # Use symmetry and treat only inequivalent points ngkpt 4 4 4 # 4x4x4 Monkhorst-Pack grid nshiftk 1 # Use one copy of grid only (default) shiftk 0.0 0.0 0.5 # This choice of origin for the k point grid # preserves the hexagonal symmetry of the grid, # which would be broken by the default choice. #Definition of the self-consistency procedure diemac 9.0 # Model dielectric preconditioner nstep 40 # Maxiumum number of SCF iterations # enforce calculation of forces at each SCF step optforces 1 ## After modifying the following section, one might need to regenerate the pickle database with runtests.py -r #%%<BEGIN TEST_INFO> #%% [setup] #%% executable = abinit #%% [files] #%% files_to_test = #%% telast_5.out, tolnlines= 3, tolabs= 3.000e-09, tolrel= 9.000e-10 #%% psp_files = 13al.pspnc, 33as.pspnc #%% [paral_info] #%% max_nprocs = 2 #%% [extra_info] #%% authors = D. Hamann #%% keywords = NC, DFPT #%% description = #%% AlAs in hypothetical wurzite (hexagonal) structure #%% Alternative response function calculation for some rigid-atom #%% piezoelectric tensor elements. #%%<END TEST_INFO>
You should compare this with our previous RF data, telast_2.in, and note that dataset1 and the Common data (after entering relaxed structural results) are essentially identical. Dataset 2 has been replaced by a non-self-consistent GS calculation with berryopt = -2 specified to perform the finite-difference ddk wave function calculation. (The finite-difference first-order wave functions are implicit but not actually calculated in the GS polarization calculation.) We have restricted rfdir to 0 0 1 since we are only interested in the 3,3 piezoelectric constant. Now compare dataset 3 with that in telast_2.in. Can you figure out what we have dropped and why? Run the telast_5.in calculation, which will only take about a minute with our simplifications.
Now edit telast_5.out, looking for the piezoelectric tensor,
Rigid-atom proper piezoelectric tensor, in cartesian coordinates, j1 j2 matrix element dir pert dir pert real part imaginary part 3 6 3 7 -0.0130314050 0.0000000000
.Version 8.0.3 of ABINIT .(MPI version, prepared for a x86_64_linux_gnu5.3 computer) .Copyright (C) 1998-2018 ABINIT group . ABINIT comes with ABSOLUTELY NO WARRANTY. It is free software, and you are welcome to redistribute it under certain conditions (GNU General Public License, see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt). ABINIT is a project of the Universite Catholique de Louvain, Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt . Please read https://docs.abinit.org/theory/acknowledgments for suggested acknowledgments of the ABINIT effort. For more information, see https://www.abinit.org . .Starting date : Mon 4 Apr 2016. - ( at 09h51 ) - input file -> telast_5.in - output file -> telast_5.out - root for input files -> telast_5i - root for output files -> telast_5o DATASET 1 : space group P6_3 m c (#186); Bravais hP (primitive hexag.) ================================================================================ Values of the parameters that define the memory need for DATASET 1. intxc = 0 ionmov = 0 iscf = 7 lmnmax = 2 lnmax = 2 mgfft = 30 mpssoang = 3 mqgrid = 3001 natom = 4 nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1 nsym = 12 n1xccc = 2501 ntypat = 2 occopt = 1 xclevel = 1 - mband = 8 mffmem = 1 mkmem = 8 mpw = 428 nfft = 9720 nkpt = 8 ================================================================================ P This job should need less than 4.132 Mbytes of memory. Rough estimation (10% accuracy) of disk space for files : _ WF disk file : 0.420 Mbytes ; DEN or POT disk file : 0.076 Mbytes. ================================================================================ DATASET 2 : space group P6_3 m c (#186); Bravais hP (primitive hexag.) ================================================================================ Values of the parameters that define the memory need for DATASET 2. intxc = 0 ionmov = 0 iscf = -2 lmnmax = 2 lnmax = 2 mgfft = 30 mpssoang = 3 mqgrid = 3001 natom = 4 nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1 nsym = 12 n1xccc = 2501 ntypat = 2 occopt = 1 xclevel = 1 - mband = 8 mffmem = 1 mkmem = 64 mpw = 428 nfft = 9720 nkpt = 64 ================================================================================ P This job should need less than 6.235 Mbytes of memory. Rough estimation (10% accuracy) of disk space for files : _ WF disk file : 3.346 Mbytes ; DEN or POT disk file : 0.076 Mbytes. ================================================================================ DATASET 3 : space group P6_3 m c (#186); Bravais hP (primitive hexag.) ================================================================================ Values of the parameters that define the memory need for DATASET 3 (RF). intxc = 0 iscf = 7 lmnmax = 2 lnmax = 2 mgfft = 30 mpssoang = 3 mqgrid = 3001 natom = 4 nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1 nsym = 12 n1xccc = 2501 ntypat = 2 occopt = 1 xclevel = 1 - mband = 8 mffmem = 1 mkmem = 32 - mkqmem = 32 mk1mem = 32 mpw = 428 nfft = 9720 nkpt = 32 ================================================================================ P This job should need less than 8.327 Mbytes of memory. Rough estimation (10% accuracy) of disk space for files : _ WF disk file : 1.674 Mbytes ; DEN or POT disk file : 0.076 Mbytes. ================================================================================ -------------------------------------------------------------------------------- ------------- Echo of variables that govern the present computation ------------ -------------------------------------------------------------------------------- - - outvars: echo of selected default values - accesswff0 = 0 , fftalg0 =312 , wfoptalg0 = 0 - - outvars: echo of global parameters not present in the input file - max_nthreads = 0 - -outvars: echo values of preprocessed input variables -------- acell 7.5389648144E+00 7.5389648144E+00 1.2277795374E+01 Bohr amu 2.69815390E+01 7.49215900E+01 berryopt1 0 berryopt2 -2 berryopt3 0 diemac 9.00000000E+00 ecut 6.00000000E+00 Hartree ecutsm 5.00000000E-01 Hartree - fftalg 312 getddk1 0 getddk2 0 getddk3 -1 getden1 0 getden2 -1 getden3 0 getwfk1 0 getwfk2 -1 getwfk3 -1 iscf1 7 iscf2 -2 iscf3 7 jdtset 1 2 3 kpt1 0.00000000E+00 0.00000000E+00 1.25000000E-01 2.50000000E-01 0.00000000E+00 1.25000000E-01 5.00000000E-01 0.00000000E+00 1.25000000E-01 2.50000000E-01 2.50000000E-01 1.25000000E-01 0.00000000E+00 0.00000000E+00 3.75000000E-01 2.50000000E-01 0.00000000E+00 3.75000000E-01 5.00000000E-01 0.00000000E+00 3.75000000E-01 2.50000000E-01 2.50000000E-01 3.75000000E-01 kpt2 0.00000000E+00 0.00000000E+00 1.25000000E-01 2.50000000E-01 0.00000000E+00 1.25000000E-01 5.00000000E-01 0.00000000E+00 1.25000000E-01 -2.50000000E-01 0.00000000E+00 1.25000000E-01 0.00000000E+00 2.50000000E-01 1.25000000E-01 2.50000000E-01 2.50000000E-01 1.25000000E-01 5.00000000E-01 2.50000000E-01 1.25000000E-01 -2.50000000E-01 2.50000000E-01 1.25000000E-01 0.00000000E+00 5.00000000E-01 1.25000000E-01 2.50000000E-01 5.00000000E-01 1.25000000E-01 5.00000000E-01 5.00000000E-01 1.25000000E-01 -2.50000000E-01 5.00000000E-01 1.25000000E-01 0.00000000E+00 -2.50000000E-01 1.25000000E-01 2.50000000E-01 -2.50000000E-01 1.25000000E-01 5.00000000E-01 -2.50000000E-01 1.25000000E-01 -2.50000000E-01 -2.50000000E-01 1.25000000E-01 0.00000000E+00 0.00000000E+00 3.75000000E-01 2.50000000E-01 0.00000000E+00 3.75000000E-01 5.00000000E-01 0.00000000E+00 3.75000000E-01 -2.50000000E-01 0.00000000E+00 3.75000000E-01 0.00000000E+00 2.50000000E-01 3.75000000E-01 2.50000000E-01 2.50000000E-01 3.75000000E-01 5.00000000E-01 2.50000000E-01 3.75000000E-01 -2.50000000E-01 2.50000000E-01 3.75000000E-01 0.00000000E+00 5.00000000E-01 3.75000000E-01 2.50000000E-01 5.00000000E-01 3.75000000E-01 5.00000000E-01 5.00000000E-01 3.75000000E-01 -2.50000000E-01 5.00000000E-01 3.75000000E-01 0.00000000E+00 -2.50000000E-01 3.75000000E-01 2.50000000E-01 -2.50000000E-01 3.75000000E-01 5.00000000E-01 -2.50000000E-01 3.75000000E-01 -2.50000000E-01 -2.50000000E-01 3.75000000E-01 0.00000000E+00 0.00000000E+00 -3.75000000E-01 2.50000000E-01 0.00000000E+00 -3.75000000E-01 5.00000000E-01 0.00000000E+00 -3.75000000E-01 -2.50000000E-01 0.00000000E+00 -3.75000000E-01 0.00000000E+00 2.50000000E-01 -3.75000000E-01 2.50000000E-01 2.50000000E-01 -3.75000000E-01 5.00000000E-01 2.50000000E-01 -3.75000000E-01 -2.50000000E-01 2.50000000E-01 -3.75000000E-01 0.00000000E+00 5.00000000E-01 -3.75000000E-01 2.50000000E-01 5.00000000E-01 -3.75000000E-01 5.00000000E-01 5.00000000E-01 -3.75000000E-01 -2.50000000E-01 5.00000000E-01 -3.75000000E-01 0.00000000E+00 -2.50000000E-01 -3.75000000E-01 2.50000000E-01 -2.50000000E-01 -3.75000000E-01 5.00000000E-01 -2.50000000E-01 -3.75000000E-01 -2.50000000E-01 -2.50000000E-01 -3.75000000E-01 0.00000000E+00 0.00000000E+00 -1.25000000E-01 2.50000000E-01 0.00000000E+00 -1.25000000E-01 kpt3 0.00000000E+00 0.00000000E+00 1.25000000E-01 2.50000000E-01 0.00000000E+00 1.25000000E-01 5.00000000E-01 0.00000000E+00 1.25000000E-01 -2.50000000E-01 0.00000000E+00 1.25000000E-01 0.00000000E+00 2.50000000E-01 1.25000000E-01 2.50000000E-01 2.50000000E-01 1.25000000E-01 5.00000000E-01 2.50000000E-01 1.25000000E-01 -2.50000000E-01 2.50000000E-01 1.25000000E-01 0.00000000E+00 5.00000000E-01 1.25000000E-01 2.50000000E-01 5.00000000E-01 1.25000000E-01 5.00000000E-01 5.00000000E-01 1.25000000E-01 -2.50000000E-01 5.00000000E-01 1.25000000E-01 0.00000000E+00 -2.50000000E-01 1.25000000E-01 2.50000000E-01 -2.50000000E-01 1.25000000E-01 5.00000000E-01 -2.50000000E-01 1.25000000E-01 -2.50000000E-01 -2.50000000E-01 1.25000000E-01 0.00000000E+00 0.00000000E+00 3.75000000E-01 2.50000000E-01 0.00000000E+00 3.75000000E-01 5.00000000E-01 0.00000000E+00 3.75000000E-01 -2.50000000E-01 0.00000000E+00 3.75000000E-01 0.00000000E+00 2.50000000E-01 3.75000000E-01 2.50000000E-01 2.50000000E-01 3.75000000E-01 5.00000000E-01 2.50000000E-01 3.75000000E-01 -2.50000000E-01 2.50000000E-01 3.75000000E-01 0.00000000E+00 5.00000000E-01 3.75000000E-01 2.50000000E-01 5.00000000E-01 3.75000000E-01 5.00000000E-01 5.00000000E-01 3.75000000E-01 -2.50000000E-01 5.00000000E-01 3.75000000E-01 0.00000000E+00 -2.50000000E-01 3.75000000E-01 2.50000000E-01 -2.50000000E-01 3.75000000E-01 5.00000000E-01 -2.50000000E-01 3.75000000E-01 -2.50000000E-01 -2.50000000E-01 3.75000000E-01 outvar_i_n : Printing only first 50 k-points. kptopt1 1 kptopt2 3 kptopt3 2 kptrlatt 4 0 0 0 4 0 0 0 4 kptrlen 3.01558593E+01 P mkmem1 8 P mkmem2 64 P mkmem3 32 P mkqmem1 8 P mkqmem2 64 P mkqmem3 32 P mk1mem1 8 P mk1mem2 64 P mk1mem3 32 natom 4 nband1 8 nband2 8 nband3 8 nbdbuf1 0 nbdbuf2 2 nbdbuf3 0 ndtset 3 ngfft 18 18 30 nkpt1 8 nkpt2 64 nkpt3 32 nqpt1 0 nqpt2 0 nqpt3 1 nstep 40 nsym 12 ntypat 2 occ1 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 occ3 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 optdriver1 0 optdriver2 0 optdriver3 1 optforces 1 rfdir1 0 0 0 rfdir2 0 0 1 rfdir3 0 0 1 rfstrs1 0 rfstrs2 0 rfstrs3 1 rprim 8.6602540378E-01 5.0000000000E-01 0.0000000000E+00 -8.6602540378E-01 5.0000000000E-01 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 1.0000000000E+00 shiftk 0.00000000E+00 0.00000000E+00 5.00000000E-01 spgroup 186 symrel 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 1 1 0 -1 0 0 0 0 1 -1 0 0 1 1 0 0 0 1 0 1 0 -1 -1 0 0 0 1 -1 -1 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 1 0 -1 0 -1 0 0 0 0 1 -1 -1 0 1 0 0 0 0 1 1 0 0 -1 -1 0 0 0 1 0 -1 0 1 1 0 0 0 1 1 1 0 0 -1 0 0 0 1 tnons 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.5000000 0.0000000 0.0000000 0.5000000 -0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 -0.0000000 0.5000000 0.0000000 0.0000000 0.5000000 0.0000000 0.0000000 0.0000000 -0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.5000000 0.0000000 -0.0000000 0.5000000 0.0000000 0.0000000 0.0000000 tolvrs1 1.00000000E-18 tolvrs2 0.00000000E+00 tolvrs3 1.00000000E-10 tolwfr1 0.00000000E+00 tolwfr2 1.00000000E-20 tolwfr3 0.00000000E+00 typat 1 1 2 2 wtk1 0.03125 0.18750 0.09375 0.18750 0.03125 0.18750 0.09375 0.18750 wtk2 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 wtk3 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 outvars : Printing only first 50 k-points. xangst -1.1516545412E+00 1.9947241781E+00 0.0000000000E+00 1.1516545412E+00 1.9947241781E+00 3.2485647418E+00 -1.1516545412E+00 1.9947241781E+00 2.4434786836E+00 1.1516545412E+00 1.9947241781E+00 5.6920434254E+00 xcart -2.1763116825E+00 3.7694824072E+00 0.0000000000E+00 2.1763116825E+00 3.7694824072E+00 6.1388976870E+00 -2.1763116825E+00 3.7694824072E+00 4.6175055235E+00 2.1763116825E+00 3.7694824072E+00 1.0756403210E+01 xred 3.3333333333E-01 6.6666666667E-01 0.0000000000E+00 6.6666666667E-01 3.3333333333E-01 5.0000000000E-01 3.3333333333E-01 6.6666666667E-01 3.7608588373E-01 6.6666666667E-01 3.3333333333E-01 8.7608588373E-01 znucl 13.00000 33.00000 ================================================================================ chkinp: Checking input parameters for consistency, jdtset= 1. chkinp: Checking input parameters for consistency, jdtset= 2. chkinp: Checking input parameters for consistency, jdtset= 3. ================================================================================ == DATASET 1 ================================================================== - nproc = 1 Exchange-correlation functional for the present dataset will be: LDA: new Teter (4/93) with spin-polarized option - ixc=1 Citation for XC functional: S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996) Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1): R(1)= 6.5289350 3.7694824 0.0000000 G(1)= 0.0765822 0.1326442 0.0000000 R(2)= -6.5289350 3.7694824 0.0000000 G(2)= -0.0765822 0.1326442 0.0000000 R(3)= 0.0000000 0.0000000 12.2777954 G(3)= 0.0000000 0.0000000 0.0814478 Unit cell volume ucvol= 6.0433042E+02 bohr^3 Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 1.20000000E+02 degrees getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 18 18 30 ecut(hartree)= 6.000 => boxcut(ratio)= 2.16976 --- Pseudopotential description ------------------------------------------------ - pspini: atom type 1 psp file is /home/gonze/ABINIT/ABINITv8.0.3/gonze/8.0.3-private/tests/Psps_for_tests/13al.pspnc - pspatm: opening atomic psp file /home/gonze/ABINIT/ABINITv8.0.3/gonze/8.0.3-private/tests/Psps_for_tests/13al.pspnc - Troullier-Martins psp for element Al Thu Oct 27 17:31:05 EDT 1994 - 13.00000 3.00000 940714 znucl, zion, pspdat 1 1 2 2 2001 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well 0 4.657 11.889 1 2.2761078 l,e99.0,e99.9,nproj,rcpsp 0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm 1 1.829 2.761 1 2.2761078 l,e99.0,e99.9,nproj,rcpsp 0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm 2 0.000 0.000 0 2.2761078 l,e99.0,e99.9,nproj,rcpsp 0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm 2.09673076353074 0.12648111154518 1.01742091001718 rchrg,fchrg,qchrg pspatm : epsatm= 0.22155260 --- l ekb(1:nproj) --> 0 2.540658 1 1.353815 pspatm: atomic psp has been read and splines computed - pspini: atom type 2 psp file is /home/gonze/ABINIT/ABINITv8.0.3/gonze/8.0.3-private/tests/Psps_for_tests/33as.pspnc - pspatm: opening atomic psp file /home/gonze/ABINIT/ABINITv8.0.3/gonze/8.0.3-private/tests/Psps_for_tests/33as.pspnc - Troullier-Martins psp for element As Thu Oct 27 17:37:14 EDT 1994 - 33.00000 5.00000 940714 znucl, zion, pspdat 1 1 1 1 2001 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well 0 4.772 10.829 1 2.5306160 l,e99.0,e99.9,nproj,rcpsp 0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm 1 2.745 5.580 0 2.5306160 l,e99.0,e99.9,nproj,rcpsp 0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm 2.05731715564010 0.36322996461007 2.76014815959125 rchrg,fchrg,qchrg pspatm : epsatm= 27.20579911 --- l ekb(1:nproj) --> 0 0.838751 pspatm: atomic psp has been read and splines computed 8.77675255E+02 ecore*ucvol(ha*bohr**3) -------------------------------------------------------------------------------- _setup2: Arith. and geom. avg. npw (full set) are 424.219 424.184 ================================================================================ iter Etot(hartree) deltaE(h) residm vres2 diffor maxfor ETOT 1 -20.254721409586 -2.025E+01 4.634E-03 8.323E+00 1.033E-03 1.033E-03 ETOT 2 -20.270119196096 -1.540E-02 1.124E-07 4.547E-01 1.196E-03 1.628E-04 ETOT 3 -20.270903177950 -7.840E-04 5.228E-06 3.336E-02 1.736E-04 1.082E-05 ETOT 4 -20.270943324824 -4.015E-05 1.668E-07 8.826E-04 9.004E-07 1.172E-05 ETOT 5 -20.270943768794 -4.440E-07 1.666E-09 6.074E-06 1.355E-05 1.830E-06 ETOT 6 -20.270943772486 -3.692E-09 1.494E-11 1.055E-07 2.925E-06 1.095E-06 ETOT 7 -20.270943772569 -8.281E-11 1.151E-12 3.544E-09 1.297E-06 2.013E-07 ETOT 8 -20.270943772573 -4.373E-12 9.120E-14 4.512E-11 2.843E-07 8.303E-08 ETOT 9 -20.270943772573 -1.030E-13 2.275E-16 6.457E-13 3.544E-09 7.949E-08 ETOT 10 -20.270943772573 3.553E-14 4.016E-18 1.237E-14 4.232E-10 7.906E-08 ETOT 11 -20.270943772573 2.842E-14 6.987E-20 1.348E-16 2.166E-12 7.906E-08 ETOT 12 -20.270943772573 -2.842E-14 4.504E-22 1.033E-18 9.664E-12 7.907E-08 ETOT 13 -20.270943772573 -3.553E-14 6.050E-24 6.241E-21 1.051E-12 7.907E-08 At SCF step 13 vres2 = 6.24E-21 < tolvrs= 1.00E-18 =>converged. Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= -3.80064359E-10 sigma(3 2)= 0.00000000E+00 sigma(2 2)= -3.80064357E-10 sigma(3 1)= 0.00000000E+00 sigma(3 3)= 7.75604717E-10 sigma(2 1)= 0.00000000E+00 Integrated electronic density in atomic spheres: ------------------------------------------------ Atom Sphere_radius Integrated_density 1 2.00000 0.92179175 2 2.00000 0.92179175 3 2.00000 2.53764202 4 2.00000 2.53764202 ================================================================================ ----iterations are completed or convergence reached---- Mean square residual over all n,k,spin= 2.3179E-24; max= 6.0497E-24 reduced coordinates (array xred) for 4 atoms 0.333333333333 0.666666666667 -0.000000000000 0.666666666667 0.333333333333 0.500000000000 0.333333333333 0.666666666667 0.376085883730 0.666666666667 0.333333333333 0.876085883730 rms dE/dt= 5.6069E-07; max dE/dt= 9.9551E-07; dE/dt below (all hartree) 1 0.000000000000 0.000000000000 -0.000000946136 2 0.000000000000 0.000000000000 -0.000000946136 3 0.000000000000 0.000000000000 0.000000995507 4 0.000000000000 0.000000000000 0.000000995507 cartesian coordinates (angstrom) at end: 1 -1.15165454116847 1.99472417807121 -0.00000000000000 2 1.15165454116847 1.99472417807121 3.24856474182627 3 -1.15165454116847 1.99472417807121 2.44347868356770 4 1.15165454116847 1.99472417807121 5.69204342539397 cartesian forces (hartree/bohr) at end: 1 -0.00000000000000 -0.00000000000000 0.00000007907130 2 -0.00000000000000 -0.00000000000000 0.00000007907130 3 -0.00000000000000 -0.00000000000000 -0.00000007907130 4 -0.00000000000000 -0.00000000000000 -0.00000007907130 frms,max,avg= 4.5651836E-08 7.9071300E-08 0.000E+00 0.000E+00 -2.011E-09 h/b cartesian forces (eV/Angstrom) at end: 1 -0.00000000000000 -0.00000000000000 0.00000406600937 2 -0.00000000000000 -0.00000000000000 0.00000406600937 3 -0.00000000000000 -0.00000000000000 -0.00000406600937 4 -0.00000000000000 -0.00000000000000 -0.00000406600937 frms,max,avg= 2.3475116E-06 4.0660094E-06 0.000E+00 0.000E+00 -1.034E-07 e/A length scales= 7.538964814400 7.538964814400 12.277795374000 bohr = 3.989448356142 3.989448356142 6.497129483653 angstroms prteigrs : about to open file telast_5o_DS1_EIG Fermi (or HOMO) energy (hartree) = 0.08616 Average Vxc (hartree)= -0.34268 Eigenvalues (hartree) for nkpt= 8 k points: kpt# 1, nband= 8, wtk= 0.03125, kpt= 0.0000 0.0000 0.1250 (reduced coord) -0.35501 -0.30563 -0.11714 0.05113 0.05113 0.06669 0.08616 0.08616 prteigrs : prtvol=0 or 1, do not print more k-points. -------------------------------------------------------------------------------- Components of total free energy (in Hartree) : Kinetic energy = 5.91947827500975E+00 Hartree energy = 1.65285115746601E+00 XC energy = -8.68515356530422E+00 Ewald energy = -1.68697612425042E+01 PspCore energy = 1.45231023648193E+00 Loc. psp. energy= -4.92404864079751E+00 NL psp energy= 1.18338000707508E+00 >>>>>>>>> Etotal= -2.02709437725731E+01 Other information on the energy : Total energy(eV)= -5.51600432199964E+02 ; Band energy (Ha)= -1.4274245066E+00 -------------------------------------------------------------------------------- Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= -3.80064359E-10 sigma(3 2)= 0.00000000E+00 sigma(2 2)= -3.80064357E-10 sigma(3 1)= 0.00000000E+00 sigma(3 3)= 7.75604717E-10 sigma(2 1)= 0.00000000E+00 -Cartesian components of stress tensor (GPa) [Pressure= -1.5177E-07 GPa] - sigma(1 1)= -1.11818776E-05 sigma(3 2)= 0.00000000E+00 - sigma(2 2)= -1.11818776E-05 sigma(3 1)= 0.00000000E+00 - sigma(3 3)= 2.28190748E-05 sigma(2 1)= 0.00000000E+00 ================================================================================ == DATASET 2 ================================================================== - nproc = 1 mkfilename : getwfk/=0, take file _WFK from output of DATASET 1. mkfilename : getden/=0, take file _DEN from output of DATASET 1. Exchange-correlation functional for the present dataset will be: LDA: new Teter (4/93) with spin-polarized option - ixc=1 Citation for XC functional: S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996) Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1): R(1)= 6.5289350 3.7694824 0.0000000 G(1)= 0.0765822 0.1326442 0.0000000 R(2)= -6.5289350 3.7694824 0.0000000 G(2)= -0.0765822 0.1326442 0.0000000 R(3)= 0.0000000 0.0000000 12.2777954 G(3)= 0.0000000 0.0000000 0.0814478 Unit cell volume ucvol= 6.0433042E+02 bohr^3 Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 1.20000000E+02 degrees getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 18 18 30 ecut(hartree)= 6.000 => boxcut(ratio)= 2.16976 -------------------------------------------------------------------------------- -inwffil : will read wavefunctions from disk file telast_5o_DS1_WFK initberry: for direction 1, nkstr = 0, nstr = 0 initberry: for direction 2, nkstr = 0, nstr = 0 initberry: for direction 3, nkstr = 4, nstr = 16 ================================================================================ prteigrs : about to open file telast_5o_DS2_EIG Non-SCF case, kpt 1 ( 0.00000 0.00000 0.12500), residuals and eigenvalues= 8.92E-25 8.41E-25 6.95E-25 5.94E-25 5.92E-25 8.49E-25 3.17E-24 2.86E-24 -3.5501E-01 -3.0563E-01 -1.1714E-01 5.1133E-02 5.1133E-02 6.6690E-02 8.6162E-02 8.6162E-02 prteigrs : prtvol=0 or 1, do not print more k-points. Computing the polarization (Berry phase) for reciprocal vector: 0.00000 0.00000 0.25000 (in reduced coordinates) 0.00000 0.00000 0.02036 (in cartesian coordinates - atomic units) Number of strings: 16 Number of k points in string: 4 Computing the ddk (Berry phase) for reciprocal vector: 0.00000 0.00000 0.25000 (in reduced coordinates) 0.00000 0.00000 0.02036 (in cartesian coordinates - atomic units) Mean square residual over all n,k,spin= 0.0000E+00; max= 0.0000E+00 Integrated electronic density in atomic spheres: ------------------------------------------------ Atom Sphere_radius Integrated_density 1 2.00000 0.92179175 2 2.00000 0.92179175 3 2.00000 2.53764202 4 2.00000 2.53764202 ================================================================================ ----iterations are completed or convergence reached---- Mean square residual over all n,k,spin= 8.1553E-22; max= 8.0308E-21 reduced coordinates (array xred) for 4 atoms 0.333333333333 0.666666666667 -0.000000000000 0.666666666667 0.333333333333 0.500000000000 0.333333333333 0.666666666667 0.376085883730 0.666666666667 0.333333333333 0.876085883730 cartesian coordinates (angstrom) at end: 1 -1.15165454116847 1.99472417807121 -0.00000000000000 2 1.15165454116847 1.99472417807121 3.24856474182627 3 -1.15165454116847 1.99472417807121 2.44347868356770 4 1.15165454116847 1.99472417807121 5.69204342539397 length scales= 7.538964814400 7.538964814400 12.277795374000 bohr = 3.989448356142 3.989448356142 6.497129483653 angstroms prteigrs : about to open file telast_5o_DS2_EIG Eigenvalues (hartree) for nkpt= 64 k points: kpt# 1, nband= 8, wtk= 0.01563, kpt= 0.0000 0.0000 0.1250 (reduced coord) -0.35501 -0.30563 -0.11714 0.05113 0.05113 0.06669 0.08616 0.08616 prteigrs : prtvol=0 or 1, do not print more k-points. ================================================================================ == DATASET 3 ================================================================== - nproc = 1 mkfilename : getwfk/=0, take file _WFK from output of DATASET 2. mkfilename : getddk/=0, take file _1WF from output of DATASET 2. Exchange-correlation functional for the present dataset will be: LDA: new Teter (4/93) with spin-polarized option - ixc=1 Citation for XC functional: S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996) Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1): R(1)= 6.5289350 3.7694824 0.0000000 G(1)= 0.0765822 0.1326442 0.0000000 R(2)= -6.5289350 3.7694824 0.0000000 G(2)= -0.0765822 0.1326442 0.0000000 R(3)= 0.0000000 0.0000000 12.2777954 G(3)= 0.0000000 0.0000000 0.0814478 Unit cell volume ucvol= 6.0433042E+02 bohr^3 Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 1.20000000E+02 degrees setup1 : take into account q-point for computing boxcut. getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 18 18 30 ecut(hartree)= 6.000 => boxcut(ratio)= 2.16976 -------------------------------------------------------------------------------- -inwffil : will read wavefunctions from disk file telast_5o_DS2_WFK symkchk : k-point set has full space-group symmetry. ==> initialize data related to q vector <== The list of irreducible perturbations for this q vector is: 1) idir= 3 ipert= 7 ================================================================================ -------------------------------------------------------------------------------- Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000 Found 12 symmetries that leave the perturbation invariant. symkpt : the number of k-points, thanks to the symmetries, is reduced to 8 . -------------------------------------------------------------------------------- -inwffil : will read wavefunctions from disk file telast_5o_DS2_WFK -------------------------------------------------------------------------------- -inwffil : will read wavefunctions from disk file telast_5o_DS2_WFK Initialisation of the first-order wave-functions : ireadwf= 0 iter 2DEtotal(Ha) deltaE(Ha) residm vres2 -ETOT 1 6.9564645294532 -1.475E+01 9.224E+00 1.083E+03 ETOT 2 3.9215700648309 -3.035E+00 2.249E-03 5.391E+01 ETOT 3 3.7565637556461 -1.650E-01 5.464E-05 2.350E+00 ETOT 4 3.7505557022822 -6.008E-03 1.734E-06 5.955E-02 ETOT 5 3.7504549303448 -1.008E-04 4.028E-08 9.403E-04 ETOT 6 3.7504530489477 -1.881E-06 9.062E-10 1.429E-05 ETOT 7 3.7504530230908 -2.586E-08 9.437E-12 1.380E-07 ETOT 8 3.7504530229165 -1.743E-10 6.688E-14 2.621E-09 ETOT 9 3.7504530229133 -3.208E-12 1.662E-15 6.657E-11 At SCF step 9 vres2 = 6.66E-11 < tolvrs= 1.00E-10 =>converged. -open ddk wf file :telast_5o_DS2_1WF15 ================================================================================ ----iterations are completed or convergence reached---- Mean square residual over all n,k,spin= 4.5383E-16; max= 1.6615E-15 Seventeen components of 2nd-order total energy (hartree) are 1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions kin0= 1.94255345E+01 eigvalue= 9.98636329E-01 local= -7.69884791E+00 4,5,6,7: 1st-order hamiltonian combined with 1st and 0th-order wfs loc psp = -1.78317292E+01 Hartree= 8.13546908E+00 xc= -1.53606654E+00 kin1= -1.83623016E+01 8,9,10: eventually, occupation + non-local contributions edocc= 0.00000000E+00 enl0= 1.85101229E+00 enl1= -2.93963984E+00 1-10 gives the relaxation energy (to be shifted if some occ is /=2.0) erelax= -1.79579329E+01 11,12,13 Non-relaxation contributions : frozen-wavefunctions and Ewald fr.hart= 7.04608276E-01 fr.kin= 1.17316806E+01 fr.loc= -1.46317503E+00 14,15,16 Non-relaxation contributions : frozen-wavefunctions and Ewald fr.nonl= 2.54397443E+00 fr.xc= -5.90180526E-01 Ewald= 7.32916794E+00 17 Non-relaxation contributions : pseudopotential core energy pspcore= 1.45231024E+00 Resulting in : 2DEtotal= 0.3750453023E+01 Ha. Also 2DEtotal= 0.102055016855E+03 eV (2DErelax= -1.7957932860E+01 Ha. 2DEnonrelax= 2.1708385883E+01 Ha) ( non-var. 2DEtotal : 3.7504532608E+00 Ha) ================================================================================ ---- first-order wavefunction calculations are completed ---- ==> Compute Derivative Database <== 2nd-order matrix (non-cartesian coordinates, masses not included, asr not included ) cartesian coordinates for strain terms (1/ucvol factor for elastic tensor components not included) j1 j2 matrix element dir pert dir pert real part imaginary part 1 1 3 1 0.0000000000 0.0000000000 1 1 3 2 0.0000000000 0.0000000000 1 1 3 3 0.0000000000 0.0000000000 1 1 3 4 0.0000000000 0.0000000000 1 1 2 6 0.0000000000 0.0000000000 1 1 3 6 0.0000000000 0.0000000000 1 1 3 7 -0.0000000001 0.0000000000 2 1 3 1 0.0000000000 0.0000000000 2 1 3 2 0.0000000000 0.0000000000 2 1 3 3 0.0000000000 0.0000000000 2 1 3 4 0.0000000000 0.0000000000 2 1 1 6 0.0000000000 0.0000000000 2 1 3 6 0.0000000000 0.0000000000 2 1 3 7 0.0000000001 0.0000000000 3 1 1 1 0.0000000000 0.0000000000 3 1 2 1 0.0000000000 0.0000000000 3 1 1 2 0.0000000000 0.0000000000 3 1 2 2 0.0000000000 0.0000000000 3 1 1 3 0.0000000000 0.0000000000 3 1 2 3 0.0000000000 0.0000000000 3 1 1 4 0.0000000000 0.0000000000 3 1 2 4 0.0000000000 0.0000000000 3 1 3 7 -2.2518809665 0.0000000000 1 2 3 1 0.0000000000 0.0000000000 1 2 3 2 0.0000000000 0.0000000000 1 2 3 3 0.0000000000 0.0000000000 1 2 3 4 0.0000000000 0.0000000000 1 2 2 6 0.0000000000 0.0000000000 1 2 3 6 0.0000000000 0.0000000000 1 2 3 7 -0.0000000001 0.0000000000 2 2 3 1 0.0000000000 0.0000000000 2 2 3 2 0.0000000000 0.0000000000 2 2 3 3 0.0000000000 0.0000000000 2 2 3 4 0.0000000000 0.0000000000 2 2 1 6 0.0000000000 0.0000000000 2 2 3 6 0.0000000000 0.0000000000 2 2 3 7 0.0000000001 0.0000000000 3 2 1 1 0.0000000000 0.0000000000 3 2 2 1 0.0000000000 0.0000000000 3 2 1 2 0.0000000000 0.0000000000 3 2 2 2 0.0000000000 0.0000000000 3 2 1 3 0.0000000000 0.0000000000 3 2 2 3 0.0000000000 0.0000000000 3 2 1 4 0.0000000000 0.0000000000 3 2 2 4 0.0000000000 0.0000000000 3 2 3 7 -2.2518809660 0.0000000000 1 3 3 1 0.0000000000 0.0000000000 1 3 3 2 0.0000000000 0.0000000000 1 3 3 3 0.0000000000 0.0000000000 1 3 3 4 0.0000000000 0.0000000000 1 3 2 6 0.0000000000 0.0000000000 1 3 3 6 0.0000000000 0.0000000000 1 3 3 7 -0.0000000001 0.0000000000 2 3 3 1 0.0000000000 0.0000000000 2 3 3 2 0.0000000000 0.0000000000 2 3 3 3 0.0000000000 0.0000000000 2 3 3 4 0.0000000000 0.0000000000 2 3 1 6 0.0000000000 0.0000000000 2 3 3 6 0.0000000000 0.0000000000 2 3 3 7 0.0000000001 0.0000000000 3 3 1 1 0.0000000000 0.0000000000 3 3 2 1 0.0000000000 0.0000000000 3 3 1 2 0.0000000000 0.0000000000 3 3 2 2 0.0000000000 0.0000000000 3 3 1 3 0.0000000000 0.0000000000 3 3 2 3 0.0000000000 0.0000000000 3 3 1 4 0.0000000000 0.0000000000 3 3 2 4 0.0000000000 0.0000000000 3 3 3 7 2.2518785658 0.0000000000 1 4 3 1 0.0000000000 0.0000000000 1 4 3 2 0.0000000000 0.0000000000 1 4 3 3 0.0000000000 0.0000000000 1 4 3 4 0.0000000000 0.0000000000 1 4 2 6 0.0000000000 0.0000000000 1 4 3 6 0.0000000000 0.0000000000 1 4 3 7 -0.0000000001 0.0000000000 2 4 3 1 0.0000000000 0.0000000000 2 4 3 2 0.0000000000 0.0000000000 2 4 3 3 0.0000000000 0.0000000000 2 4 3 4 0.0000000000 0.0000000000 2 4 1 6 0.0000000000 0.0000000000 2 4 3 6 0.0000000000 0.0000000000 2 4 3 7 0.0000000001 0.0000000000 3 4 1 1 0.0000000000 0.0000000000 3 4 2 1 0.0000000000 0.0000000000 3 4 1 2 0.0000000000 0.0000000000 3 4 2 2 0.0000000000 0.0000000000 3 4 1 3 0.0000000000 0.0000000000 3 4 2 3 0.0000000000 0.0000000000 3 4 1 4 0.0000000000 0.0000000000 3 4 2 4 0.0000000000 0.0000000000 3 4 3 7 2.2518785657 0.0000000000 1 6 2 1 0.0000000000 0.0000000000 1 6 2 2 0.0000000000 0.0000000000 1 6 2 3 0.0000000000 0.0000000000 1 6 2 4 0.0000000000 0.0000000000 1 6 3 6 0.0000000000 0.0000000000 2 6 1 1 0.0000000000 0.0000000000 2 6 1 2 0.0000000000 0.0000000000 2 6 1 3 0.0000000000 0.0000000000 2 6 1 4 0.0000000000 0.0000000000 2 6 3 6 0.0000000000 0.0000000000 3 6 1 1 0.0000000000 0.0000000000 3 6 2 1 0.0000000000 0.0000000000 3 6 1 2 0.0000000000 0.0000000000 3 6 2 2 0.0000000000 0.0000000000 3 6 1 3 0.0000000000 0.0000000000 3 6 2 3 0.0000000000 0.0000000000 3 6 1 4 0.0000000000 0.0000000000 3 6 2 4 0.0000000000 0.0000000000 3 6 1 6 0.0000000000 0.0000000000 3 6 2 6 0.0000000000 0.0000000000 3 6 3 7 -4.0301867956 0.0000000000 1 7 3 7 0.4332108824 0.0000000000 2 7 3 7 0.4332108828 0.0000000000 3 7 3 7 3.7504532608 0.0000000000 1 8 3 7 0.0000000000 0.0000000000 2 8 3 7 0.0000000000 0.0000000000 3 8 3 7 -0.0000000003 0.0000000000 Rigid-atom elastic tensor , in cartesian coordinates, j1 j2 matrix element dir pert dir pert real part imaginary part 1 7 3 7 0.0007168444 0.0000000000 2 7 3 7 0.0007168444 0.0000000000 3 7 3 7 0.0062059647 0.0000000000 1 8 3 7 0.0000000000 0.0000000000 2 8 3 7 0.0000000000 0.0000000000 3 8 3 7 -0.0000000000 0.0000000000 Internal strain coupling parameters, in cartesian coordinates, zero average net force deriv. has been imposed j1 j2 matrix element dir pert dir pert real part imaginary part 1 1 3 7 0.0000000000 0.0000000000 2 1 3 7 -0.0000000000 0.0000000000 3 1 3 7 0.1834107588 0.0000000000 1 2 3 7 -0.0000000000 0.0000000000 2 2 3 7 0.0000000000 0.0000000000 3 2 3 7 0.1834107588 0.0000000000 1 3 3 7 0.0000000000 0.0000000000 2 3 3 7 -0.0000000000 0.0000000000 3 3 3 7 -0.1834107588 0.0000000000 1 4 3 7 0.0000000000 0.0000000000 2 4 3 7 -0.0000000000 0.0000000000 3 4 3 7 -0.1834107588 0.0000000000 Rigid-atom proper piezoelectric tensor, in cartesian coordinates, (from strain response) j1 j2 matrix element dir pert dir pert real part imaginary part 3 6 3 7 -0.0130314050 0.0000000000 == END DATASET(S) ============================================================== ================================================================================ -outvars: echo values of variables after computation -------- acell 7.5389648144E+00 7.5389648144E+00 1.2277795374E+01 Bohr amu 2.69815390E+01 7.49215900E+01 berryopt1 0 berryopt2 -2 berryopt3 0 diemac 9.00000000E+00 ecut 6.00000000E+00 Hartree ecutsm 5.00000000E-01 Hartree etotal1 -2.0270943773E+01 etotal3 3.7504530229E+00 fcart1 -0.0000000000E+00 -0.0000000000E+00 7.9071299709E-08 -0.0000000000E+00 -0.0000000000E+00 7.9071299709E-08 -0.0000000000E+00 -0.0000000000E+00 -7.9071299709E-08 -0.0000000000E+00 -0.0000000000E+00 -7.9071299709E-08 fcart3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 - fftalg 312 getddk1 0 getddk2 0 getddk3 -1 getden1 0 getden2 -1 getden3 0 getwfk1 0 getwfk2 -1 getwfk3 -1 iscf1 7 iscf2 -2 iscf3 7 jdtset 1 2 3 kpt1 0.00000000E+00 0.00000000E+00 1.25000000E-01 2.50000000E-01 0.00000000E+00 1.25000000E-01 5.00000000E-01 0.00000000E+00 1.25000000E-01 2.50000000E-01 2.50000000E-01 1.25000000E-01 0.00000000E+00 0.00000000E+00 3.75000000E-01 2.50000000E-01 0.00000000E+00 3.75000000E-01 5.00000000E-01 0.00000000E+00 3.75000000E-01 2.50000000E-01 2.50000000E-01 3.75000000E-01 kpt2 0.00000000E+00 0.00000000E+00 1.25000000E-01 2.50000000E-01 0.00000000E+00 1.25000000E-01 5.00000000E-01 0.00000000E+00 1.25000000E-01 -2.50000000E-01 0.00000000E+00 1.25000000E-01 0.00000000E+00 2.50000000E-01 1.25000000E-01 2.50000000E-01 2.50000000E-01 1.25000000E-01 5.00000000E-01 2.50000000E-01 1.25000000E-01 -2.50000000E-01 2.50000000E-01 1.25000000E-01 0.00000000E+00 5.00000000E-01 1.25000000E-01 2.50000000E-01 5.00000000E-01 1.25000000E-01 5.00000000E-01 5.00000000E-01 1.25000000E-01 -2.50000000E-01 5.00000000E-01 1.25000000E-01 0.00000000E+00 -2.50000000E-01 1.25000000E-01 2.50000000E-01 -2.50000000E-01 1.25000000E-01 5.00000000E-01 -2.50000000E-01 1.25000000E-01 -2.50000000E-01 -2.50000000E-01 1.25000000E-01 0.00000000E+00 0.00000000E+00 3.75000000E-01 2.50000000E-01 0.00000000E+00 3.75000000E-01 5.00000000E-01 0.00000000E+00 3.75000000E-01 -2.50000000E-01 0.00000000E+00 3.75000000E-01 0.00000000E+00 2.50000000E-01 3.75000000E-01 2.50000000E-01 2.50000000E-01 3.75000000E-01 5.00000000E-01 2.50000000E-01 3.75000000E-01 -2.50000000E-01 2.50000000E-01 3.75000000E-01 0.00000000E+00 5.00000000E-01 3.75000000E-01 2.50000000E-01 5.00000000E-01 3.75000000E-01 5.00000000E-01 5.00000000E-01 3.75000000E-01 -2.50000000E-01 5.00000000E-01 3.75000000E-01 0.00000000E+00 -2.50000000E-01 3.75000000E-01 2.50000000E-01 -2.50000000E-01 3.75000000E-01 5.00000000E-01 -2.50000000E-01 3.75000000E-01 -2.50000000E-01 -2.50000000E-01 3.75000000E-01 0.00000000E+00 0.00000000E+00 -3.75000000E-01 2.50000000E-01 0.00000000E+00 -3.75000000E-01 5.00000000E-01 0.00000000E+00 -3.75000000E-01 -2.50000000E-01 0.00000000E+00 -3.75000000E-01 0.00000000E+00 2.50000000E-01 -3.75000000E-01 2.50000000E-01 2.50000000E-01 -3.75000000E-01 5.00000000E-01 2.50000000E-01 -3.75000000E-01 -2.50000000E-01 2.50000000E-01 -3.75000000E-01 0.00000000E+00 5.00000000E-01 -3.75000000E-01 2.50000000E-01 5.00000000E-01 -3.75000000E-01 5.00000000E-01 5.00000000E-01 -3.75000000E-01 -2.50000000E-01 5.00000000E-01 -3.75000000E-01 0.00000000E+00 -2.50000000E-01 -3.75000000E-01 2.50000000E-01 -2.50000000E-01 -3.75000000E-01 5.00000000E-01 -2.50000000E-01 -3.75000000E-01 -2.50000000E-01 -2.50000000E-01 -3.75000000E-01 0.00000000E+00 0.00000000E+00 -1.25000000E-01 2.50000000E-01 0.00000000E+00 -1.25000000E-01 kpt3 0.00000000E+00 0.00000000E+00 1.25000000E-01 2.50000000E-01 0.00000000E+00 1.25000000E-01 5.00000000E-01 0.00000000E+00 1.25000000E-01 -2.50000000E-01 0.00000000E+00 1.25000000E-01 0.00000000E+00 2.50000000E-01 1.25000000E-01 2.50000000E-01 2.50000000E-01 1.25000000E-01 5.00000000E-01 2.50000000E-01 1.25000000E-01 -2.50000000E-01 2.50000000E-01 1.25000000E-01 0.00000000E+00 5.00000000E-01 1.25000000E-01 2.50000000E-01 5.00000000E-01 1.25000000E-01 5.00000000E-01 5.00000000E-01 1.25000000E-01 -2.50000000E-01 5.00000000E-01 1.25000000E-01 0.00000000E+00 -2.50000000E-01 1.25000000E-01 2.50000000E-01 -2.50000000E-01 1.25000000E-01 5.00000000E-01 -2.50000000E-01 1.25000000E-01 -2.50000000E-01 -2.50000000E-01 1.25000000E-01 0.00000000E+00 0.00000000E+00 3.75000000E-01 2.50000000E-01 0.00000000E+00 3.75000000E-01 5.00000000E-01 0.00000000E+00 3.75000000E-01 -2.50000000E-01 0.00000000E+00 3.75000000E-01 0.00000000E+00 2.50000000E-01 3.75000000E-01 2.50000000E-01 2.50000000E-01 3.75000000E-01 5.00000000E-01 2.50000000E-01 3.75000000E-01 -2.50000000E-01 2.50000000E-01 3.75000000E-01 0.00000000E+00 5.00000000E-01 3.75000000E-01 2.50000000E-01 5.00000000E-01 3.75000000E-01 5.00000000E-01 5.00000000E-01 3.75000000E-01 -2.50000000E-01 5.00000000E-01 3.75000000E-01 0.00000000E+00 -2.50000000E-01 3.75000000E-01 2.50000000E-01 -2.50000000E-01 3.75000000E-01 5.00000000E-01 -2.50000000E-01 3.75000000E-01 -2.50000000E-01 -2.50000000E-01 3.75000000E-01 outvar_i_n : Printing only first 50 k-points. kptopt1 1 kptopt2 3 kptopt3 2 kptrlatt 4 0 0 0 4 0 0 0 4 kptrlen 3.01558593E+01 P mkmem1 8 P mkmem2 64 P mkmem3 32 P mkqmem1 8 P mkqmem2 64 P mkqmem3 32 P mk1mem1 8 P mk1mem2 64 P mk1mem3 32 natom 4 nband1 8 nband2 8 nband3 8 nbdbuf1 0 nbdbuf2 2 nbdbuf3 0 ndtset 3 ngfft 18 18 30 nkpt1 8 nkpt2 64 nkpt3 32 nqpt1 0 nqpt2 0 nqpt3 1 nstep 40 nsym 12 ntypat 2 occ1 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 occ3 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 optdriver1 0 optdriver2 0 optdriver3 1 optforces 1 rfdir1 0 0 0 rfdir2 0 0 1 rfdir3 0 0 1 rfstrs1 0 rfstrs2 0 rfstrs3 1 rprim 8.6602540378E-01 5.0000000000E-01 0.0000000000E+00 -8.6602540378E-01 5.0000000000E-01 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 1.0000000000E+00 shiftk 0.00000000E+00 0.00000000E+00 5.00000000E-01 spgroup 186 strten1 -3.8006435932E-10 -3.8006435716E-10 7.7560471717E-10 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 strten3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 symrel 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 1 1 0 -1 0 0 0 0 1 -1 0 0 1 1 0 0 0 1 0 1 0 -1 -1 0 0 0 1 -1 -1 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 1 0 -1 0 -1 0 0 0 0 1 -1 -1 0 1 0 0 0 0 1 1 0 0 -1 -1 0 0 0 1 0 -1 0 1 1 0 0 0 1 1 1 0 0 -1 0 0 0 1 tnons 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.5000000 0.0000000 0.0000000 0.5000000 -0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 -0.0000000 0.5000000 0.0000000 0.0000000 0.5000000 0.0000000 0.0000000 0.0000000 -0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.5000000 0.0000000 -0.0000000 0.5000000 0.0000000 0.0000000 0.0000000 tolvrs1 1.00000000E-18 tolvrs2 0.00000000E+00 tolvrs3 1.00000000E-10 tolwfr1 0.00000000E+00 tolwfr2 1.00000000E-20 tolwfr3 0.00000000E+00 typat 1 1 2 2 wtk1 0.03125 0.18750 0.09375 0.18750 0.03125 0.18750 0.09375 0.18750 wtk2 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 wtk3 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 outvars : Printing only first 50 k-points. xangst -1.1516545412E+00 1.9947241781E+00 -7.2132627467E-16 1.1516545412E+00 1.9947241781E+00 3.2485647418E+00 -1.1516545412E+00 1.9947241781E+00 2.4434786836E+00 1.1516545412E+00 1.9947241781E+00 5.6920434254E+00 xcart -2.1763116825E+00 3.7694824072E+00 -1.3631091116E-15 2.1763116825E+00 3.7694824072E+00 6.1388976870E+00 -2.1763116825E+00 3.7694824072E+00 4.6175055235E+00 2.1763116825E+00 3.7694824072E+00 1.0756403210E+01 xred 3.3333333333E-01 6.6666666667E-01 -1.1102230246E-16 6.6666666667E-01 3.3333333333E-01 5.0000000000E-01 3.3333333333E-01 6.6666666667E-01 3.7608588373E-01 6.6666666667E-01 3.3333333333E-01 8.7608588373E-01 znucl 13.00000 33.00000 ================================================================================ - Timing analysis has been suppressed with timopt=0 ================================================================================ Suggested references for the acknowledgment of ABINIT usage. The users of ABINIT have little formal obligations with respect to the ABINIT group (those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt). However, it is common practice in the scientific literature, to acknowledge the efforts of people that have made the research possible. In this spirit, please find below suggested citations of work written by ABINIT developers, corresponding to implementations inside of ABINIT that you have used in the present run. Note also that it will be of great value to readers of publications presenting these results, to read papers enabling them to understand the theoretical formalism and details of the ABINIT implementation. For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments. - - [1] Metric tensor formulation of strain in density-functional perturbation theory, - D. R. Hamann, X. Wu, K. M. Rabe, and D. Vanderbilt, Phys. Rev. B71, 035117 (2005). - Comment : Non-vanishing rfstrs. Strong suggestion to cite this paper in your publications. - - [2] ABINIT : First-principles approach of materials and nanosystem properties. - X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, - D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi - S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, - M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, - M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger - Computer Phys. Comm. 180, 2582-2615 (2009). - Comment : the third generic paper describing the ABINIT project. - Note that a version of this paper, that is not formatted for Computer Phys. Comm. - is available at https://www.abinit.org/about/ABINIT_CPC_v10.pdf . - The licence allows the authors to put it on the Web. - - [3] A brief introduction to the ABINIT software package. - X. Gonze, G.-M. Rignanese, M. Verstraete, J.-M. Beuken, Y. Pouillon, R. Caracas, F. Jollet, - M. Torrent, G. Zerah, M. Mikami, Ph. Ghosez, M. Veithen, J.-Y. Raty, V. Olevano, F. Bruneval, - L. Reining, R. Godby, G. Onida, D.R. Hamann, and D.C. Allan. - Z. Kristallogr. 220, 558-562 (2005). - Comment : the second generic paper describing the ABINIT project. Note that this paper - should be cited especially if you are using the GW part of ABINIT, as several authors - of this part are not in the list of authors of the first or third paper. - The .pdf of the latter paper is available at https://www.abinit.org/about/zfk_0505-06_558-562.pdf. - Note that it should not redistributed (Copyright by Oldenburg Wissenshaftverlag, - the licence allows the authors to put it on the Web). - - And optionally: - - [4] First-principles computation of material properties : the ABINIT software project. - X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, - M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty, D.C. Allan. - Computational Materials Science 25, 478-492 (2002). http://dx.doi.org/10.1016/S0927-0256(02)00325-7 - Comment : the original paper describing the ABINIT project. - - [5] Fast radix 2, 3, 4 and 5 kernels for Fast Fourier Transformations - on computers with overlapping multiply-add instructions. - S. Goedecker, SIAM J. on Scientific Computing 18, 1605 (1997). - - Proc. 0 individual time (sec): cpu= 26.8 wall= 6.6 ================================================================================ Calculation completed. .Delivered 13 WARNINGs and 2 COMMENTs to log file. +Overall time at end (sec) : cpu= 26.8 wall= 6.6
We immediately see a problem – this output, like most of the .out file, is in atomic units, while we computed our numerical derivative in conventional C/m^2 units. While you might think to simply run anaddb to do the conversion as before, its present version is not happy with such an incomplete DDB file as telast_5 has generated and will not produce the desired result. While it should be left as an exercise to the student to dig the conversion factor out of the literature, or better yet out of the source code, we will cheat and tell you that 1 a.u.=57.2147606 C/m^2 Thus the new RF result for the 3,3 rigid- ion piezoelectric constant is -0.7455887 C/m^2 compared to the result found in section 4 by a completely-GS finite difference calculation, -0.745589 C/m^2. The agreement is now excellent!
The fully RF calculation in section 2 in fact will converge much more rapidly with k sample than the partial-finite-difference method introduced here. Is it worthwhile to have learned how to do this? We believe that is always pays to have alternative ways to test results, and besides, this didn’t take much time. (Have you found the conversion factor on your own yet?)
6 Response-function calculation of the elastic constants of Al metal¶
For metals, the existence of partially occupied bands is a complicating
feature for RF as well as GS calculations.
Now would be a good time to review tutorial 4 which dealt in detail with the interplay between
k-sample convergence and Fermi-surface broadening, especially section 3 of tutorial 4.
You should copy telast_6.in and telast_6.files into Work_elast, and begin your run
while you read on, since it involves a convergence study with multiple datasets and may take about two minutes.
#Al fcc metal - elastic constant calculation ndtset 12 # Total number of datasets (3*4) udtset 3 4 # Double loop for k-sample convergence study # Set 1 : Initial self-consistent and lattice optimization run getwfk?1 0 ionmov?1 2 # Broyden lattice optimization scheme ntime?1 5 # Maximim lattice optimization steps optcell?1 1 # Optimize cell volume only strfact?1 100 # Test convergence of stresses (Hartree/bohr^3) by # multiplying by this factor and applying force # convergence test tolmxf?1 1.0e-6 # Convergence limit for forces as above tolvrs?1 1.0d-18 # Need excellent convergence of GS quantities for RF runs # Set 2 : Additional iteration to print density just at converged acell prtden?2 1 # Third dataset needs density tolvrs?2 1.0d-18 # Set 3 : Converge unoccupied wave functions getden?3 -1 # Use density from previout set tolwfr?3 5.0d-19 # Only wave function convergence can be used with # non-self-consistent calculation tolwfr23 1.0d-30 # This is simply for a reason of portability of automatic tests nstep23 6 # This is simply for a reason of portability of automatic tests nstep33 20 # This is simply for a reason of portability of automatic tests # Set 4 : response-function calculations for all needed perturbations kptopt?4 2 # Time-reversal only for RF calculation nqpt?4 1 qpt?4 0 0 0 # By symmetry, only need one direction rfdir?4 1 0 0 rfstrs?4 3 # Need both unaxial and shear strains tolvrs?4 1.0d-12 # Need reasonable convergence of 1st-order quantities #Common input data #Double loop data passing getcell -1 # Start from optimized (datasets ?2-?4) or previously # optimized (datasets ?1) acell getwfk -1 # Use last set of wave functions (except datasets ?1) #Lattice definition acell 3*7.60 # Starting value dilatmx 1.05 # Allow for optimization rprim 0.0 0.5 0.5 0.5 0.0 0.5 0.5 0.5 0.0 #Definition of the atom types and atoms ntypat 1 znucl 13 natom 1 typat 1 #Atomic position xred 0.0 0.0 0.0 #Definition of the plane wave basis set ecut 8.0 # Maximum kinetic energy cutoff (Hartree) ecutsm 0.5 # Smoothing energy needed for lattice parameter # optimization. This will be retained for # consistency throughout. #Definition of the k-point grid - loop over 3 k-point densities ngkpt1? 6 6 6 ngkpt2? 8 8 8 ngkpt3? 10 10 10 nshiftk 4 # Use one copy of grid only (default) shiftk 0.0 0.0 0.5 # This gives the usual fcc Monkhorst-Pack grid 0.0 0.5 0.0 0.5 0.0 0.0 0.5 0.5 0.5 #Definition of occupation numbers and number of bands nband 4 # With metallic occup occopt 3 # Femi-function smearing tsmear 0.02 #Definition of the self-consistency procedure nstep 25 # Maximum number of SCF iterations # This might not be enough for the very demanding tolwfr?3 above, # but was chosen for portability reasons. # enforce calculation of forces at each SCF step optforces 1 ## After modifying the following section, one might need to regenerate the pickle database with runtests.py -r #%%<BEGIN TEST_INFO> #%% [setup] #%% executable = abinit #%% [files] #%% files_to_test = #%% telast_6.out, tolnlines= 0, tolabs= 0.000e+00, tolrel= 0.000e+00, fld_options = -medium #%% psp_files = 13al.pspnc, 33as.pspnc #%% [paral_info] #%% max_nprocs = 2 #%% [extra_info] #%% authors = D. Hamann #%% keywords = NC, DFPT #%% description = Al fcc metal - elastic constant calculation #%%<END TEST_INFO>
While the run is in progress, edit telast_6.in. As in tbase4_3.in, we will set udtset to specify a double loop. In the present case, however, the outer loop will be over 3 successively larger meshes of k points, while the inner loop will be successively
- GS self-consistent runs with optimization of acell.
- GS density-generating run for the next step.
- Non-self-consistent GS run to converge unoccupied or slightly-occupied bands.
- RF run for symmetry-inequivalent elastic constants.
In Section 1, we did a separate GS structural optimization run and transferred the results by hand to RF run section 2. Because we are doing a convergence test here, we have combined these steps, and use getcell to transfer the optimized coordinates from the first dataset of the inner loop forward to the rest. If we were doing a more complicated structure with internal coordinates that were also optimized, we would need to use both this and getxred to transfer these, as in telast_1.in.
The specific data for inner-loop dataset 1 is very similar to that for telast_1.in. Inner-loop dataset 2 is a bit of a hack. We need the density for inner-loop dataset 3, and while we could set prtden = 1 in dataset 1, this would produce a separate density file for every step in the structural optimization, and it isn’t clear how to automatically pick out the last one. So, dataset 2 picks up the wave functions from dataset 1 (only one file of these is produced, for the optimized structure), does one more iteration with fixed geometry, and writes a density file.
Inner-loop dataset 3 is a non-self-consistent run whose purpose is to ensure that all the wave functions specified by nband are well converged. For metals, we have to specify enough bands to make sure that the Fermi surface is properly calculated. Bands above the Fermi level which have small occupancy or near-zero occupancy if their energies exceed the Fermi energy by more than a few times tsmear, will have very little effect on the self-consistent potential, so the tolvrs test in dataset 1 doesn’t ensure their convergence. Using tolwfr in inner-loop dataset 3 does. Partially- occupied or unoccupied bands up to nband play a different role in constructing the first-order wave functions than do the many unoccupied bands beyond nband which aren’t explicitly treated in Abinit, as discussed in S. de Gironcoli, Phys. Rev. B 51, 6773 (1995) [DeGironcoli1995]. By setting nband exactly equal to the number of occupied bands for RF calculations for semiconductors and insulators, we avoid having to deal with the issue of converging unoccupied bands. Could we avoid the extra steps by simply using tolwfr instead of tolvrs in dataset 1? Perhaps, but experience has shown that this does not necessarily lead to as well-converged a potential, and it is not recommended. These same considerations apply to phonon calculations for metals, or in particular to qpt= 0 0 0 phonon calculations for the interatomic force constants needed to find atom-relaxation contributions to the elastic constants for non-trivial structures as in section 2 and section 3.
The data specific to the elastic-tensor RF calculation in inner-loop dataset 4 should by now be familiar. We take advantage of the fact that for cubic symmetry the only symmetry-inequivalent elastic constants are C_{11}, C_{12}, and C_{44}. Abinit, unfortunately, does not do this analysis automatically, so we specify rfdir = 1 0 0 to avoid duplicate calculations. (Note that if atom relaxation is to be taken into account for a more complex structure, the full set of directions must be used.)
When the telast_6 calculations finish, first look at telast_6.log as usual to
make sure they have run to completion without error. Next, it would be a good
idea to look at the band occupancies occ?? (where ?? is a dual-loop dataset
index) reported at the end (following ==END DATASET(S)==
). The highest band,
the fourth in this case, should have zero or very small occupation, or you
need to increase nband or decrease tsmear . Now, use your newly
perfected knowledge of the Abinit perturbation indexing conventions to scan
through telast_6.out and find C_{11} , C_{12} , and C_{44} for each of the three
k -sample choices, which will be under the ” Rigid-atom elastic tensor”
heading. Also find the lattice constants for each case, whose convergence you
studied in tutorial 4.
You should be able to cut-and-paste these into a table like the following,
C_11 C_12 C_44 acell ngkpt=3*6 0.0037773556 0.0022583541 0.0013453692 7.5710952266 ngkpt=3*8 0.0042004431 0.0020423388 0.0013076763 7.5693986665 ngkpt=3*10 0.0042034396 0.0020343437 0.0012956768 7.5694820855
We can immediately see that the lattice constant converges considerably more rapidly with k sample than the elastic constants. For ngkpt =3*6, acell is converged to 0.02%, while the C’s have 5-10% errors. For ngkpt =3*8, the C’s are converged to better than 1%, much better for the largest, C_{11}, which should be acceptable.
As in tutorial 4, the ngkpt convergence is controlled by tsmear. The smaller the broadening, the denser the k sample that is needed to get a smooth variation of occupancy, and presumably stress, with strain. While we will not explore tsmear convergence in this tutorial, you may wish to do so on your own. We believe that the value tsmear = 0.02 in telast_6.in gives results within 1% of the fully-converged small-broadening limit.
We find thatoccopt =3, standard Fermi-Dirac broadening , gives much better convergence of the C’s than “cold smearing.” Changing occopt to 4 in telast_6.in, the option used in tutorial 4, the C’s show no sign of convergence. At ngkpt=3*16, errors are still ~5%. The reasons that this supposedly superior smoothing function performs so poorly in this context is a future research topic. The main thing to be learned is that checking convergence with respect to all relevant parameters is always the user’s responsibility. Simple systems that include the main physical features of a complex system of interest will usually suffice for this testing. Don’t get caught publishing a result that another researcher refutes on convergence grounds, and don’t blame such a mistake on Abinit!
Now we make a comparison with experiment. Converting the C’s to standard units (Ha/Bohr^3 = 2.94210119E+04 GPa) and using zero-temperature extrapolated experimental results from P. M. Sutton, Phys. Rev. 91, 816 (1953) [Sutton1953], we find
C_11(GPa) C_12(GPa) C_44(GPa) Calculated 123.7 59.9 38.1 Experiment (T=0) 123.0 70.8 30.9
Is this good agreement? There isn’t much literature on DFT calculations of full sets of elastic constants. Many calculations of the bulk modulus (K=(C_{11}+2C_{12} )/3 in the cubic case) typically are within 10% of experiment for the LDA. Running telast_6 with ixc=11, the Perdew-Burke-Enzerhof GGA, increases the calculated C’s by 1-2%, and wouldn’t be expected to make a large difference for a nearly-free-electron metal.
Comment on symmetry¶
It is important to bear in mind that the way a tensor like the elastic tensor appears is a function of the frame used. Thus for the aluminum fcc case considered above, the nonzero elements are C_{11}, C_{12}, and C_{44}, provided that the crystal axes are aligned with the laboratory frame. For an arbitrary alignment of the crystal axes, many more C_{ij} elements will be non-zero, and this can be confusing.
It’s easy to see why this happens if you imagine actually measuring the elastic tensor elements. If you start with the conventional cubic cell, and apply pressure to one face, you can measure C_{11}. But if you turn the cell to some random angle, you’ll measure a response that is a mixture of C_{11} and C_{12}.
Within ABINIT, if the aluminum fcc cell is described using angdeg and acell, then an axis of the primitive cell will be aligned along the laboratory z axis but this will not lead to a (conventional) cell alignment with the laboratory frame. The resulting elastic tensor will be correct but will appear to be more complicated than in the illustration above. It can be rotated back to a simple frame by hand (bearing in mind that all four indices of the fourth-rank elastic tensor have to be rotated!) but it’s easier to start with a more conventional alignment of the unit cell.
If you use a standard text like Bradley and Cracknell, The Mathematical Theory of Symmetry in Solids, Oxford [Bradley1972] you can find the standard primitive cell descriptions for the Bravais lattice types and these are aligned as much as possible with a standard laboratory frame.